Letter to the Editor Regarding "Predicting Asthma Exacerbations Using Machine Learning Models"

被引:0
作者
Yu, Zekai [1 ]
机构
[1] Hangzhou Dianzi Univ, 1158,2 Rd,Xiasha Higher Educ Zone, Hangzhou 310018, Zhejiang, Peoples R China
关键词
Asthma; Electronic health records; Exacerbations; Machine learning; Physician diagnosed asthma; Real-world prediction; XGBoost;
D O I
10.1007/s12325-025-03119-5
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
引用
收藏
页码:2537 / 2538
页数:2
相关论文
共 5 条
[1]   Predicting Effective Thermal Conductivity of Sintered Silver by Microstructural-Simulation-Based Machine Learning [J].
Du, Chengjie ;
Zou, Guisheng ;
Feng, Bin ;
Huo, Jinpeng ;
Zhanwen, A. ;
Xiao, Yu ;
Wang, Wengan ;
Liu, Lei .
JOURNAL OF ELECTRONIC MATERIALS, 2023, 52 (04) :2347-2358
[2]   Determining asthma endotypes and outcomes: Complementing existing clinical practice with modern machine learning [J].
Ray, Anuradha ;
Das, Jishnu ;
Wenzel, Sally E. .
CELL REPORTS MEDICINE, 2022, 3 (12)
[3]   Genetics of chronic respiratory disease [J].
Sayers, Ian ;
John, Catherine ;
Chen, Jing ;
Hall, Ian P. .
NATURE REVIEWS GENETICS, 2024, 25 (08) :534-547
[4]   Decoding the genetic and epigenetic basis of asthma [J].
Stikker, Bernard S. ;
Hendriks, Rudi W. ;
Stadhouders, Ralph .
ALLERGY, 2023, 78 (04) :940-956
[5]   Leveraging -omics for asthma endotyping [J].
Tyler, Scott R. ;
Bunyavanich, Supinda .
JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, 2019, 144 (01) :13-24