A Network Traffic Prediction Model Based on Layered Training Graph Convolutional Network

被引:0
|
作者
Li, Yulian [1 ]
Su, Yang [1 ]
机构
[1] Xian Univ Sci & Technol, Sch Commun & Informat Engn, Xian 710054, Shaanxi, Peoples R China
来源
IEEE ACCESS | 2025年 / 13卷
关键词
Gated recurrent unit; graph convolutional network; space-correlated features; time-correlated features; traffic prediction;
D O I
10.1109/ACCESS.2025.3538265
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Routing deployment and resource scheduling in communication networks require accurate traffic prediction. Neural network-based models that extract the time-correlated or space-correlated features of traffic flow have been developed for traffic prediction. The conventional model that extracts space-correlated features of traffic flow have the problem of high computational complexity and long training time which limits the model's application on rapid routing deployment. This paper therefore proposes a layered training graph convolutional network (LT-GCN) to decrease the training time greatly with the nearly same prediction accuracy as graph convolutional network (GCN). Instead of training on parameters in all hidden layers simultaneously, LT-GCN develops a new layer-by-layer training pattern for multiple hidden layers to degrade the computational complexity in training process. LT-GCN is then further integrated with gated recurrent unit (GRU) that is called LTGG model to achieve the joint extraction of time-correlated and space-correlated features of traffic flow for more accurate prediction. Experimental results demonstrate that LT-GCN outperforms the classical GCN model on training time and LTGG exhibits greater performance than other benchmark models on prediction accuracy.
引用
收藏
页码:24398 / 24410
页数:13
相关论文
共 50 条
  • [31] Multi-View SpatialTemporal Graph Convolutional Network for Traffic Prediction
    Wei, Shuqing
    Feng, Siyuan
    Yang, Hai
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (08) : 9572 - 9586
  • [32] Spatial-Temporal Dilated and Graph Convolutional Network for traffic prediction
    Yang, Guoliang
    Wen, Junlin
    Yu, Dinglin
    Zhang, Shuo
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 802 - 806
  • [33] Dynamic Graph Convolutional Recurrent Network for Traffic Prediction: Benchmark and Solution
    Li, Fuxian
    Feng, Jie
    Yan, Huan
    Jin, Guangyin
    Yang, Fan
    Sun, Funing
    Jin, Depeng
    Li, Yong
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2023, 17 (01)
  • [34] Temporal Multi-Graph Convolutional Network for Traffic Flow Prediction
    Lv, Mingqi
    Hong, Zhaoxiong
    Chen, Ling
    Chen, Tieming
    Zhu, Tiantian
    Ji, Shouling
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (06) : 3337 - 3348
  • [35] Interactive dynamic diffusion graph convolutional network for traffic flow prediction
    Zhang, Shuai
    Yu, Wangzhi
    Zhang, Wenyu
    INFORMATION SCIENCES, 2024, 677
  • [36] Dynamic Spatio-Temporal Graph Fusion Convolutional Network for Urban Traffic Prediction
    Ma, Haodong
    Qin, Xizhong
    Jia, Yuan
    Zhou, Junwei
    APPLIED SCIENCES-BASEL, 2023, 13 (16):
  • [37] SSGCRTN: a space-specific graph convolutional recurrent transformer network for traffic prediction
    Yang, Shiyu
    Wu, Qunyong
    Wang, Yuhang
    Lin, Tingyu
    APPLIED INTELLIGENCE, 2024, 54 (22) : 11978 - 11994
  • [38] A Network Traffic Prediction Model Based on Graph Neural Network in Software-Defined Networking
    Li, Guoyan
    Shang, Yihui
    Liu, Yi
    Zhou, Xiangru
    INTERNATIONAL JOURNAL OF INFORMATION SECURITY AND PRIVACY, 2022, 16 (01)
  • [39] ST-DAGCN: A spatiotemporal dual adaptive graph convolutional network model for traffic prediction
    Liu, Yutian
    Feng, Tao
    Rasouli, Soora
    Wong, Melvin
    NEUROCOMPUTING, 2024, 601
  • [40] Traffic Matrix Prediction in SDN based on Spatial-Temporal Residual Graph Convolutional Network
    Wang, Xintong
    Sun, Yibo
    Wang, Xuan
    Wang, Enliang
    Sun, Zhixin
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 3382 - 3387