Development of a Wire-Driven Robotic Fish Based on Double Sine Mechanism

被引:0
作者
Yang, Qian [1 ]
Wang, Qixin [1 ]
Cao, Zihao [1 ]
Zhao, Zeyue [1 ]
Chen, Ye [1 ]
Zhong, Yong [1 ]
机构
[1] South China Univ Technol, Shien Ming Wu Sch Intelligent Engn, Guangzhou Int Campus, Guangzhou 510640, Peoples R China
基金
中国国家自然科学基金;
关键词
robotic fish; wire-driven; double sine mechanism; different tail stiffness; various swimming frequencies; BODY;
D O I
10.3390/biomimetics10030136
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Wire-driven robotic fish can effectively simulate the movement of real fish, but research on high-frequency wire-driven robotic fish is limited. This paper introduces the development of wire-driven robotic fish based on a double-sine mechanism. The appearance of the fish body is designed based on the morphology of tuna, and a mechanism that can support the high-frequency movement of the wire-driven mechanism is designed. The swimming speed and turning performance of the robotic fish are experimentally tested at various swing frequencies. The experimental results show that within the range of 1 to 4 Hz, the swimming speed of the robotic fish with different tail stiffness increases as the frequency increases. However, when the frequency exceeds 4 Hz, the swimming speed decreases. The tail joint with lower stiffness performs better at low frequencies, but as frequency increases, higher stiffness results in better swimming performance. Experimental tests show that the turning radius increases with higher swing frequencies and lower stiffness, resulting in a larger turning radius. This experiment will help to improve the application of high-frequency wire-driven mechanisms in the study of robot fish movement and carry out more in-depth bionic research in the future.
引用
收藏
页数:21
相关论文
共 27 条
[1]   Search for 14.4 keV solar axions from M1 transition of 57Fe with CUORE crystals [J].
Alessandria, F. ;
Ardito, R. ;
Artusa, D. R. ;
Avignone, F. T., III ;
Azzolini, O. ;
Balata, M. ;
Banks, T. I. ;
Bari, G. ;
Beeman, J. ;
Bellini, F. ;
Biassoni, A. ;
Biassoni, M. ;
Bloxham, T. ;
Brofferio, C. ;
Bucci, C. ;
Cai, X. Z. ;
Canonica, L. ;
Capelli, S. ;
Carbone, L. ;
Cardani, L. ;
Carrettoni, M. ;
Casali, N. ;
Chott, N. ;
Clemenza, M. ;
Cosmelli, C. ;
Cremonesi, O. ;
Creswick, R. J. ;
Dafinei, I. ;
Dally, A. ;
Datskov, V. ;
De Biasi, A. ;
Decowski, M. P. ;
Deninno, M. M. ;
Di Domizio, S. ;
di Vacri, M. L. ;
Ejzak, L. ;
Faccini, R. ;
Fang, D. Q. ;
Farach, H. A. ;
Ferri, E. ;
Ferroni, F. ;
Fiorini, E. ;
Franceschi, M. A. ;
Freedman, S. J. ;
Fujikawa, B. K. ;
Giachero, A. ;
Gironi, L. ;
Giuliani, A. ;
Goett, J. ;
Gorla, P. .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2013, (05)
[2]   OpenFish: Biomimetic design of a soft robotic fish for high speed locomotion [J].
Berg, Sander C. van den ;
Scharff, Rob B. N. ;
Wu, Jun .
HARDWAREX, 2022, 12
[3]   Swimming Performance of a Tensegrity Robotic Fish [J].
Chen, Bingxing ;
Jiang, Hongzhou .
SOFT ROBOTICS, 2019, 6 (04) :520-531
[4]   Development of a High-Speed Swimming Robot With the Capability of Fish-Like Leaping [J].
Chen, Di ;
Wu, Zhengxing ;
Meng, Yan ;
Tan, Min ;
Yu, Junzhi .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2022, 27 (05) :3579-3589
[5]  
Clapham RJ, 2015, SPR TRACTS MECH ENG, P193, DOI 10.1007/978-3-662-46870-8_7
[6]   Passive mechanical models of fish caudal fins: effects of shape and stiffness on self-propulsion [J].
Feilich, Kara L. ;
Lauder, George V. .
BIOINSPIRATION & BIOMIMETICS, 2015, 10 (03)
[7]  
Li L, 2014, IEEE INT CONF ROBOT, P800, DOI 10.1109/ICRA.2014.6906946
[8]   Development of a Two-Joint Robotic Fish for Real-World Exploration [J].
Liang, Jianhong ;
Wang, Tianmiao ;
Wen, Li .
JOURNAL OF FIELD ROBOTICS, 2011, 28 (01) :70-79
[9]   Robot fish with a novel biomimetic wire-driven flapping propulsor [J].
Liao, Baofeng ;
Li, Zheng ;
Du, Ruxu .
ADVANCED ROBOTICS, 2014, 28 (05) :339-349
[10]   A Wire-Driven Dual Elastic Fishtail With Energy Storing and Passive Flexibility [J].
Liao, Xiaocun ;
Zhou, Chao ;
Wang, Jian ;
Tan, Min .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2024, 29 (03) :1914-1925