Human Activity Recognition Based on Feature Fusion of Millimeter Wave Radar and Inertial Navigation

被引:1
作者
Shi, Jiajia [1 ]
Zhu, Yihan [1 ]
He, Jiaqing [1 ]
Xu, Zhihuo [1 ]
Chu, Liu [2 ]
Braun, Robin [3 ]
Shi, Quan [1 ]
机构
[1] Nantong Univ, Sch Transportat & Civil Engn, Nantong 226007, Peoples R China
[2] ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China
[3] Univ Technol Sydney, Sch Elect & Data Engn, Ultimo, NSW 2007, Australia
来源
IEEE JOURNAL OF MICROWAVES | 2025年 / 5卷 / 02期
基金
中国国家自然科学基金;
关键词
Radar; Human activity recognition; Inertial navigation; Accuracy; Transformers; Feature extraction; Sensors; Millimeter wave radar; Convolutional neural networks; Radar tracking; inertial navigation; micro-Doppler; millimeter wave radar; convolutional neural network; vision transformer; INFORMATION;
D O I
10.1109/JMW.2025.3539957
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Human activity recognition (HAR) technology is increasingly utilized in domains such as security surveillance, nursing home monitoring, and health assessment. The integration of multi-sensor data improves recognition efficiency and the precision of behavioral analysis by offering a more comprehensive view of human activities. However, challenges arise due to the diversity of data types, dimensions, sampling rates, and environmental disturbances, which complicate feature extraction and data fusion. To address these challenges, we propose a HAR approach that fuses millimeter-wave radar and inertial navigation data using bimodal neural networks. We first design a comprehensive data acquisition framework that integrates both radar and inertial navigation systems, with a focus on ensuring time synchronization. The radar data undergoes range compression, moving target indication (MTI), short-time Fourier transforms (STFT), and wavelet transforms to reduce noise and improve quality and stability. The inertial navigation data is refined through moving average filtering and hysteresis compensation to enhance accuracy and reduce latency. Next, we introduce the Radar-Inertial Navigation Multi-modal Fusion Attention (T-C-RIMFA) model. In this model, a Convolutional Neural Network (CNN) processes the 1D inertial navigation data for feature extraction, while a channel attention mechanism prioritizes features from different convolutional kernels. Simultaneously, a Vision Transformer (ViT) interprets features from radar-derived micro-Doppler images. Experimental results demonstrate significant improvements in HAR tasks, achieving an accuracy of 0.988. This approach effectively leverages the strengths of both sensors, enhancing the accuracy and robustness of HAR systems.
引用
收藏
页码:409 / 424
页数:16
相关论文
共 62 条
[1]   Human Gait Modeling, Prediction and Classification for Level Walking Using Harmonic Models Derived from a Single Thigh-Mounted IMU [J].
Abhayasinghe, Nimsiri ;
Murray, Iain .
SENSORS, 2022, 22 (06)
[2]   Multi-Sensor Fusion for Activity Recognition-A Survey [J].
Aguileta, Antonio A. ;
Brena, Ramon F. ;
Mayora, Oscar ;
Molino-Minero-Re, Erik ;
Trejo, Luis A. .
SENSORS, 2019, 19 (17)
[3]   Towards a Low-Cost Solution for Gait Analysis Using Millimeter Wave Sensor and Machine Learning [J].
Alanazi, Mubarak A. ;
Alhazmi, Abdullah K. ;
Alsattam, Osama ;
Gnau, Kara ;
Brown, Meghan ;
Thiel, Shannon ;
Jackson, Kurt ;
Chodavarapu, Vamsy P. .
SENSORS, 2022, 22 (15)
[4]  
Ali I., 2023, P IEEE INT C DEV INT, P597, DOI [10.1109/DICCT56244.2023.10110160, DOI 10.1109/DICCT56244.2023.10110160]
[5]   KinectGaitNet: Kinect-Based Gait Recognition Using Deep Convolutional Neural Network [J].
Bari, A. S. M. Hossain ;
Gavrilova, Marina L. .
SENSORS, 2022, 22 (07)
[6]   Exploring transformers for behavioural biometrics: A case study in gait recognition [J].
Delgado-Santos, Paula ;
Tolosana, Ruben ;
Guest, Richard ;
Deravi, Farzin ;
Vera-Rodriguez, Ruben .
PATTERN RECOGNITION, 2023, 143
[7]   Pedestrian Navigation System with Trinal-IMUs for Drastic Motions [J].
Ding, Yiming ;
Xiong, Zhi ;
Li, Wanling ;
Cao, Zhiguo ;
Wang, Zhengchun .
SENSORS, 2020, 20 (19) :1-19
[8]  
Dong X., 2022, arXiv, DOI 10.48550/ARXIV.2212.06138,CoRR
[9]   Fusion of Sensor Measurements and Target-Provided Information in Multitarget Tracking [J].
Gaglione, Domenico ;
Braca, Paolo ;
Soldi, Giovanni ;
Meyer, Florian ;
Hlawatsch, Franz ;
Win, Moe Z. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2022, 70 :322-336
[10]  
Hsieh S.-H., 2023, P IEEE 5 EUR C BIOM, P175, DOI [10.1109/ECBIOS57802.2023.10218461, DOI 10.1109/ECBIOS57802.2023.10218461]