Tolerant and highly-permeable membrane aerated biofilm reactor enabled by selective armored membrane

被引:0
|
作者
Yao, Jinxin [1 ]
Li, Yuchen [1 ]
An, Liuqian [1 ]
Wang, Peizhi [1 ]
Liu, Dongqing [1 ]
Ma, Jun [1 ]
Wang, Aijie [1 ]
Wang, Wei [1 ]
机构
[1] Harbin Inst Technol, Sch Environm, State Key Lab Urban Water Resource & Environm SKLU, Harbin 150090, Peoples R China
基金
黑龙江省自然科学基金; 中国国家自然科学基金;
关键词
Wastewater; Nitrogen removal; Oxygen transfer; MABR; Gas permeable membrane; PERFORMANCE; DENITRIFICATION; NITRIFICATION;
D O I
10.1016/j.watres.2025.123337
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Membrane aerated biofilm reactor (MABR) is a promising technology for dramatically reducing aeration energy consumption in wastewater treatment. However, the crucial membranes, including microporous hydrophobic membranes and dense membranes, are intolerant to fouling and possess high oxygen transfer resistance respectively, hindering their application potential. Herein, we developed a tolerant and highly-permeable membrane aerated biofilm reactor (THMABR) with a selective armor layer on the membrane to support the biofilm. The selective permeability of the selective armor layer enabled oxygen transfer efficiently and prevented interference by water, surfactant and microbial extracellular polymers. Besides, the composite of the 5 mu m selective armor layer and microporous support significantly shortened the distance for solution-diffusion, reducing the transmembrane energy barrier of oxygen molecules. The THMABR's excellent and stable oxygen permeability solved the oxygen substrate concentration's limitation on oxidation rate, enabling functional bacteria to possess a higher oxidation potential and more abundant ecological niche. Based on the novel design, oxygen selective armor membrane (OSAM) performed notably higher oxygen transfer rates (9.61 gO2 & sdot;m- 2d- 1) compared to the fouled microporous hydrophobic membrane (3.31 gO2 & sdot;m- 2d- 1) and the dense membrane (4.04 gO2 & sdot;m- 2d- 1). Besides, the OSAM exhibited more stable fouling resistance to water infiltration and pollutant intrusion compared to the microporous hydrophobic membrane after surfactant pretreatment. Municipal wastewater treatment tests further confirmed that the novel membrane support-selective armored layer-biofilm structure of THMABR can high-efficiently remove nitrogen. The structural characteristics, mechanisms of fouling resistance and oxygen transfer, as well as wastewater treatment performance of the THMABR and OSAM are discussed in detail. This work introduces a new design concept to overcome the bottleneck of traditional MABRs involving the disunity of tolerance and permeability, being expected to support the low-carbon and stable operation of wastewater biological treatment.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Biodegradation of acetonitrile by adapted biofilm in a membrane-aerated biofilm reactor
    Li, Tinggang
    Bai, Renbi
    Ohandja, Dieudonne-Guy
    Liu, Junxin
    BIODEGRADATION, 2009, 20 (04) : 569 - 580
  • [32] Hot-pressed membrane assemblies enhancing the biofilm formation and nitrogen removal in a membrane-aerated biofilm reactor
    Li, Jibin
    Ma, Jinxing
    Liao, Huaiyu
    Li, Xianhui
    Shen, Liguo
    Lin, Hongjun
    Sun, Li
    Ou, Rui
    He, Di
    SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 833
  • [33] Evaluation of biofilm scouring methods on the nitrification efficiency in a pilot-scale membrane-aerated biofilm reactor
    Ali, Priyanka
    Reeve, Matt
    Carlson-Stadler, Russell
    Vela, Jeseth Delgado
    Liu, Lu
    Christenson, Dylan
    Shaw, Andrew
    Stadler, Lauren B.
    WATER ENVIRONMENT RESEARCH, 2025, 97 (03)
  • [34] Process Performance and Bacterial Community Structure Under Increasing Influent Disturbances in a Membrane-Aerated Biofilm Reactor
    Tian, Hailong
    Yan, Yingchun
    Chen, Yuewen
    Wu, Xiaolei
    Li, Baoan
    JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY, 2016, 26 (02) : 373 - 384
  • [35] Temperature dependence of nitrification in a membrane-aerated biofilm reactor
    Nemeth, Andras
    Ainsworth, Jude
    Ravishankar, Harish
    Lens, Piet N. L.
    Heffernan, Barry
    FRONTIERS IN MICROBIOLOGY, 2023, 14
  • [36] Green and Sustainable Treatment of Urine Wastewater with a Membrane-Aerated Biofilm Reactor for Space Applications
    Zhan, Chengbo
    Zhang, Liangchang
    Ai, Weidang
    Dong, Wenyi
    WATER, 2022, 14 (22)
  • [37] Including Nitrite as an Intermediate in Simultaneous Nitrification/Denitrification Membrane-Aerated Biofilm Reactor Models
    Landes, Nicholas
    Morse, Audra
    Jackson, W. Andrew
    ENVIRONMENTAL ENGINEERING SCIENCE, 2013, 30 (10) : 606 - 616
  • [38] Performance Evaluation of Membrane-Aerated Biofilm Reactor for Acetonitrile Wastewater Treatment
    Kunlasubpreedee, Patthranit
    Visvanathan, Chettiyappan
    JOURNAL OF ENVIRONMENTAL ENGINEERING, 2020, 146 (07)
  • [39] Performance analysis of a pilot-scale membrane aerated biofilm reactor for the treatment of landfill leachate
    Syron, Eoin
    Semmens, Michael J.
    Casey, Eoin
    CHEMICAL ENGINEERING JOURNAL, 2015, 273 : 120 - 129
  • [40] Characterizing biofilm thickness, density, and microbial community composition in a full-scale hybrid membrane aerated biofilm reactor
    Lakshminarasimman, Narasimman
    Mcknight, Michelle M.
    Neufeld, Josh D.
    Parker, Wayne
    BIORESOURCE TECHNOLOGY, 2025, 423