Hierarchical Phosphide-Based Hybrid Anodes for High-Performance Lithium-Ion Batteries

被引:0
|
作者
Xiao, Shanshan [1 ]
Chen, Yong [1 ]
Zhou, Xianggang [2 ]
Sun, Hechen [2 ]
Wan, Wubin [5 ]
Li, Yingqi [2 ]
Yao, Ruiqi [2 ]
Bi, Fei [1 ]
Zhao, Li [1 ]
Wang, Liyan [1 ]
Lang, Xing-You [3 ,4 ]
Jiang, Qing [3 ,4 ]
机构
[1] Jilin Jianzhu Univ, Coll Mat Sci & Engn, Lab Bldg Energy Saving Technol Engn, Changchun 130118, Peoples R China
[2] Northeast Normal Univ, Fac Chem, Key Lab Polyoxometalate & Reticular Mat Chem, Minist Educ, Changchun 130024, Peoples R China
[3] Jilin Univ, Key Lab Automobile Mat, Minist Educ, Changchun 130022, Peoples R China
[4] Jilin Univ, Sch Mat Sci & Engn, Changchun 130022, Peoples R China
[5] Hubei Univ Automot Technol, Sch Mat Sci & Engn, Shiyan 442002, Peoples R China
基金
中国国家自然科学基金;
关键词
transition metal phosphides; nickel phosphide; cobalt hydroxide; nanocomposite; lithium-ion batteries; METAL-ORGANIC FRAMEWORKS; NI2P NANOPARTICLES; ENERGY-STORAGE; GRAPHENE; SODIUM; LIFE; FABRICATION; NANOFLOWERS; NANORODS; NITROGEN;
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Transition metal phosphides (TMPs) have emerged as promising anode materials for lithium-ion batteries (LIBs). However, their poor intrinsic conductivity and significant volume changes result in slow redox kinetics and structural collapse during cycling, which hinder their practical application. Here, a hierarchical hybrid anode is synthesized by evenly dispersing Ni2P particles with N-doped carbon encapsulation on Co(OH)2 nanosheets (Co(OH)2/Ni2P@N-C). This distinctive hybrid structure enhances electron/ion conductivity and reduces the Li+ transport distance, thereby boosting LIB performance. The hierarchical Co(OH)2/Ni2P@N-C hybrid anode delivers a high reversible capacity of 610 mAh g-1 at 0.05 A g-1 and exhibits exceptional long-term stability. This approach could pave the way for the development of high-performance LIBs and provide crucial guidance for designing high-energy-density anodes based on TMPs.
引用
收藏
页码:3532 / 3540
页数:9
相关论文
共 50 条
  • [1] Layered germanium phosphide-based anodes for high-performance lithium- and sodium-ion batteries
    Nam, Ki-Hun
    Jeon, Ki-Joon
    Park, Cheol-Min
    ENERGY STORAGE MATERIALS, 2019, 17 : 78 - 87
  • [2] Cobalt phosphide-based composites as anodes for lithium-ion batteries: From mechanism, preparation to performance
    Lan, Bo
    Wang, Yishan
    Lu, Jialei
    Liu, Dongdong
    Wei, Chuncheng
    Zhang, Xueqian
    Huang, Xiaoxiao
    Wen, Guangwu
    PARTICUOLOGY, 2024, 88 : 11 - 31
  • [3] Ni-Sn-based hybrid composite anodes for high-performance lithium-ion batteries
    Tuan Loi Nguyen
    Kim, Doo Soo
    Hur, Jaehyun
    Park, Min Sang
    Kim, Il Tae
    ELECTROCHIMICA ACTA, 2018, 278 : 25 - 32
  • [4] Functionalized MXene anodes for high-performance lithium-ion batteries
    Kim, Hyokyeong
    Choi, Jiwoo
    Bae, Inseong
    Son, Hayoung
    Choi, Junyoung
    Lee, Jinyong
    Kim, Jiwoong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1010
  • [5] Indium Phosphide/Reduced Graphene Oxide Composites as High-Performance Anodes in Lithium-Ion Batteries
    Liu, Shuling
    Wei, Wei
    He, Xiaodong
    CHEMELECTROCHEM, 2018, 5 (21): : 3315 - 3322
  • [6] Solvated Graphene Frameworks as High-Performance Anodes for Lithium-Ion Batteries
    Xu, Yuxi
    Lin, Zhaoyang
    Zhong, Xing
    Papandrea, Ben
    Huang, Yu
    Duan, Xiangfeng
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (18) : 5345 - 5350
  • [7] Stable Hollow-Structured Silicon Suboxide-Based Anodes toward High-Performance Lithium-Ion Batteries
    Tian, Hao
    Tian, Huajun
    Yang, Wu
    Zhang, Fan
    Yang, Wang
    Zhang, Qiaobao
    Wang, Yong
    Liu, Jian
    Silva, S. Ravi P.
    Liu, Hao
    Wang, Guoxiu
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (25)
  • [8] Upcycling complex ion industrial wastewater to high-performance hybrid anodes for lithium-ion batteries
    Xie, Caiyue
    Zhou, Xianggang
    Li, Tianyi
    Li, Yuran
    Chen, Yixiao
    Ma, Yuting
    Yao, Ruiqi
    Li, Yingqi
    Lang, Xingyou
    Jiang, Qing
    Li, Yangguang
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2025, 13 (03):
  • [9] Nanostructured Silicon Anodes for High-Performance Lithium-Ion Batteries
    Rahman, Md. Arafat
    Song, Guangsheng
    Bhatt, Anand I.
    Wong, Yat Choy
    Wen, Cuie
    ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (05) : 647 - 678
  • [10] Porous CuO nanotubes/graphene with sandwich architecture as high-performance anodes for lithium-ion batteries
    Xiao, Shuning
    Pan, Donglai
    Wang, Liangjun
    Zhang, Zhengzhong
    Lyu, Zhiyang
    Dong, Wenhao
    Chen, Xiaolang
    Zhang, Dieqing
    Chen, Wei
    Li, Hexing
    NANOSCALE, 2016, 8 (46) : 19343 - 19351