QUALITATIVE PROPERTIES OF POSITIVE SOLUTIONS OF A MIXED ORDER NONLINEAR SCHRODINGER EQUATION

被引:0
作者
Dipierro, Serena [1 ]
Su, Xifeng [2 ]
Valdinoci, Enrico [1 ]
Zhang, Jiwen [2 ]
机构
[1] Univ Western Australia, Dept Math & Stat, 35 Stirling Highway, Crawley, WA 6009, Australia
[2] Beijing Normal Univ, Sch Math Sci, 19 XinJieKouWai St, Beijing 100875, Peoples R China
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
Mixed order operators; regularity theory; power-type decay; heat kernel; HARNACK INEQUALITY; RADIAL SOLUTIONS; UNIQUENESS; DELTA-U+F(U)=0; STATES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we deal with the mixed local/nonlo cal Schroddinger equation { -Delta u + (-Delta)(s)u + u = u(p) in R-n , u > 0 in R-n , lim(|x|->+infinity) u ( x ) = 0, where n >= 2, s is an element of (0, 1), and p is an element of (1, n +2 / n - 2) The existence of positive solutions for the above problem is proved, relying on some new regularity results. In addition, we study the power-type decay and the radial symmetry properties of such solutions. The methods also make use of some basic properties of the heat kernel and the Bessel kernel associated with the operator -Delta + (-Delta)(s). In this context, we provide self-contained proofs of these results based on Fourier analysis techniques.
引用
收藏
页码:1948 / 2000
页数:53
相关论文
共 33 条
  • [1] UNIQUENESS AND RELATED ANALYTIC PROPERTIES FOR THE BENJAMIN-ONO-EQUATION - A NONLINEAR NEUMANN PROBLEM IN THE PLANE
    AMICK, CJ
    TOLAND, JF
    [J]. ACTA MATHEMATICA, 1991, 167 (1-2) : 107 - 126
  • [2] Bingham NH., 1989, Regular Variation
  • [3] Blumenthal R.M., 1960, Trans. Amer. Math. Soc., V95, P263, DOI 10.1090/S0002-9947-1960-0119247-6
  • [4] Bochner S., 1949, Annals of Mathematics Studies, V19
  • [5] Density and tails of unimodal convolution semigroups
    Bogdan, Krzysztof
    Grzywny, Tomasz
    Ryznar, Michal
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (06) : 3543 - 3571
  • [6] Brezis H, 2011, UNIVERSITEXT, P1
  • [7] ASYMPTOTIC BEHAVIOR OF DENSITIES OF UNIMODAL CONVOLUTION SEMIGROUPS
    Cygan, Wojciech
    Grzywny, Tomasz
    Trojan, Bartosz
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (08) : 5623 - 5644
  • [8] CONCENTRATION PHENOMENA FOR THE NONLOCAL SCHRODINGER EQUATION WITH DIRICHLET DATUM
    Davila, Juan
    del Pino, Manuel
    Dipierro, Serena
    Valdinoci, Enrico
    [J]. ANALYSIS & PDE, 2015, 8 (05): : 1165 - 1235
  • [9] Concentrating standing waves for the fractional nonlinear Schrodinger equation
    Davila, Juan
    del Pino, Manuel
    Wei, Juncheng
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (02) : 858 - 892
  • [10] Dipierro S., 2024, Elliptic Partial Differential Equations from an Elementary Viewpoint. A Fresh Glance at the Classical Theory, DOI 10.1142/13776