Denture reinforcement via topology optimization

被引:0
作者
Altunay, Rabia [1 ,2 ]
Vesterinen, Kalevi [2 ]
Alander, Pasi [2 ]
Immonen, Eero [2 ]
Rupp, Andreas [1 ,3 ]
Roininen, Lassi [1 ]
机构
[1] Lappeenranta Lahti Univ Technol LUT, Sch Engn Sci, Yliopistonkatu 34, FI-53850 Lappeenranta, Finland
[2] Turku Univ Appl Sci, Computat Engn & Anal Res Grp, Joukahaisenkatu 3, FI-20520 Turku, Finland
[3] Saarland Univ, Dept Math, DE-66123 Saarbrucken, Germany
关键词
Dental prosthesis; Finite element analysis; Optimization; Reinforcement; Structural analysis; BITE FORCE; FIBER; DESIGN;
D O I
10.1016/j.medengphy.2024.104272
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We present a computational design method that optimizes the reinforcement of dentures and increases the stiffness of dentures. Our approach optimally places reinforcement in the denture, which modern multi-material three-dimensional printers could implement. The study focuses on reducing denture displacement by identifying regions that require reinforcement (E-glass material) with the help of topology optimization. Our method is applied to a three-dimensional complete lower jaw denture. We compare the displacement results of a non- reinforced denture and a reinforced denture that has two materials. The comparison results indicate that there is a decrease in the displacement in the reinforced denture. Considering node-based displacement distribution, the reinforcement reduces the displacement magnitudes in the reinforced denture compared to the non-reinforced denture. The study guides dental technicians on where to automatically place reinforcement in the fabrication process, helping them save time and reduce material usage.
引用
收藏
页数:7
相关论文
共 49 条
[1]   Printing Accuracy and Flexural Properties of Different 3D-Printed Denture Base Resins [J].
al-Qarni, Faisal D. ;
Gad, Mohammed M. .
MATERIALS, 2022, 15 (07)
[2]   Structural optimisation for medical implants through additive manufacturing [J].
Al-Tamimi, Abdulsalam Abdulaziz ;
Almeida, Henrique ;
Bartolo, Paulo .
PROGRESS IN ADDITIVE MANUFACTURING, 2020, 5 (02) :95-110
[3]   Layer structure and load-bearing properties of fibre reinforced composite beam used in cantilever fixed dental prostheses [J].
Alander, Pasi ;
Perea-Lowery, Leila ;
Vesterinen, Kalevi ;
Suominen, Auli ;
Sailynoja, Eija ;
Vallittu, Pekka Kalevi .
DENTAL MATERIALS JOURNAL, 2021, 40 (01) :165-172
[4]  
Allaire G., 2021, Handbook of Numerical Analysis, V22, P1, DOI DOI 10.1016/BS.HNA.2020.10.004
[5]  
Altunay R, 2024, ECMS, P330
[6]   The effect of occlusal contact localization on the stress distribution in complete maxillary denture [J].
Ates, M. ;
Cilingir, A. ;
Sulun, T. ;
Sunbuloglu, E. ;
Bozdag, E. .
JOURNAL OF ORAL REHABILITATION, 2006, 33 (07) :509-513
[7]  
Ausiello P, 2023, Advances on mechanics, design engineering and manufacturing, VIV, P294
[8]  
Bendsoe M, 2004, Topology Optimization: Theory, Methods, and Applications, V2nd, DOI [10.1007/978-3-662-05086-6, DOI 10.1007/978-3-662-05086-6]
[9]  
Bo Sun, 2021, IOP Conference Series: Materials Science and Engineering, V1078, DOI 10.1088/1757-899X/1078/1/012007
[10]  
Calderon Patrícia dos Santos, 2006, J. Appl. Oral Sci., V14, P448, DOI 10.1590/S1678-77572006000600011