Transform-based tensor nuclear norm (TNN) methods have gained considerable attention for their effectiveness in addressing tensor recovery challenges. The integration of deep neural networks as nonlinear transforms has been shown to significantly enhance their performance. Minimizing transform-based TNN is equivalent to minimizing the l(1) norm of singular values in the transformed domain, which can be interpreted as finding a sparse representation with respect to the bases supported by singular vectors. This work aims to advance deep transform-based TNN methods by identifying amore compact representation through learnable bases, ultimately improving recovery accuracy. We specifically employ convolutional kernels as these learnable bases, demonstrating their capability to generate more compact representation, i.e., sparser coefficients of real-world tensor data compared to singular vectors. Our proposed model consists of two key components: a transform component, implemented through fully connected neural networks (FCNs), and a convolutional component that replaces traditional singular matrices. Then, this model is optimized using the ADAM algorithm directly on the incomplete tensor in a zero-shot manner, meaning all learnable parameters within the FCNs and convolution kernels are inferred solely from the observed data. Experimental results indicate that our method, with this straightforward yet effective modification, outperforms state-of-the-art approaches on video and multispectral image recovery tasks.
机构:
S Dakota Sch Mines & Technol, Dept Math & Comp Sci, Rapid City, SD 57701 USAS Dakota Sch Mines & Technol, Dept Math & Comp Sci, Rapid City, SD 57701 USA
机构:
Stanford Univ, Dept Math, Stanford, CA 94305 USA
Stanford Univ, Dept Stat, Stanford, CA 94305 USAStanford Univ, Dept Math, Stanford, CA 94305 USA
Candes, Emmanuel J.
;
Li, Xiaodong
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Math, Stanford, CA 94305 USA
Stanford Univ, Dept Stat, Stanford, CA 94305 USAStanford Univ, Dept Math, Stanford, CA 94305 USA
Li, Xiaodong
;
Ma, Yi
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Dept Elect & Comp Engn, Coordinated Sci Lab 145, Urbana, IL 61801 USA
Microsoft Res Asia, Visual Comp Grp, Beijing 100080, Peoples R ChinaStanford Univ, Dept Math, Stanford, CA 94305 USA
Ma, Yi
;
Wright, John
论文数: 0引用数: 0
h-index: 0
机构:
Microsoft Res Asia, Visual Comp Grp, Beijing 100080, Peoples R ChinaStanford Univ, Dept Math, Stanford, CA 94305 USA
机构:
Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R ChinaUniv Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China
Deng, Liang-Jian
;
Feng, Minyu
论文数: 0引用数: 0
h-index: 0
机构:
Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 611731, Sichuan, Peoples R ChinaUniv Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China
Feng, Minyu
;
Tai, Xue-Cheng
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Baptist Univ, Dept Math, Kowloon, Hong Kong, Peoples R ChinaUniv Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China
机构:
Tokyo Inst Technol, Dept Commun & Integrated Syst, Meguro Ku, Tokyo 1528550, JapanTokyo Inst Technol, Dept Commun & Integrated Syst, Meguro Ku, Tokyo 1528550, Japan
Gandy, Silvia
;
Recht, Benjamin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Wisconsin, Dept Comp Sci, Madison, WI 53706 USATokyo Inst Technol, Dept Commun & Integrated Syst, Meguro Ku, Tokyo 1528550, Japan
机构:
S Dakota Sch Mines & Technol, Dept Math & Comp Sci, Rapid City, SD 57701 USAS Dakota Sch Mines & Technol, Dept Math & Comp Sci, Rapid City, SD 57701 USA
机构:
Stanford Univ, Dept Math, Stanford, CA 94305 USA
Stanford Univ, Dept Stat, Stanford, CA 94305 USAStanford Univ, Dept Math, Stanford, CA 94305 USA
Candes, Emmanuel J.
;
Li, Xiaodong
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Math, Stanford, CA 94305 USA
Stanford Univ, Dept Stat, Stanford, CA 94305 USAStanford Univ, Dept Math, Stanford, CA 94305 USA
Li, Xiaodong
;
Ma, Yi
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Dept Elect & Comp Engn, Coordinated Sci Lab 145, Urbana, IL 61801 USA
Microsoft Res Asia, Visual Comp Grp, Beijing 100080, Peoples R ChinaStanford Univ, Dept Math, Stanford, CA 94305 USA
Ma, Yi
;
Wright, John
论文数: 0引用数: 0
h-index: 0
机构:
Microsoft Res Asia, Visual Comp Grp, Beijing 100080, Peoples R ChinaStanford Univ, Dept Math, Stanford, CA 94305 USA
机构:
Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R ChinaUniv Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China
Deng, Liang-Jian
;
Feng, Minyu
论文数: 0引用数: 0
h-index: 0
机构:
Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 611731, Sichuan, Peoples R ChinaUniv Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China
Feng, Minyu
;
Tai, Xue-Cheng
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Baptist Univ, Dept Math, Kowloon, Hong Kong, Peoples R ChinaUniv Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China
机构:
Tokyo Inst Technol, Dept Commun & Integrated Syst, Meguro Ku, Tokyo 1528550, JapanTokyo Inst Technol, Dept Commun & Integrated Syst, Meguro Ku, Tokyo 1528550, Japan
Gandy, Silvia
;
Recht, Benjamin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Wisconsin, Dept Comp Sci, Madison, WI 53706 USATokyo Inst Technol, Dept Commun & Integrated Syst, Meguro Ku, Tokyo 1528550, Japan