Trampoline metamaterial coupled with Helmholtz resonator for enhanced acoustic piezoelectric energy harvesting

被引:0
|
作者
Deng, Tian [1 ]
Zhao, Luke [3 ]
Jin, Feng [1 ,2 ]
机构
[1] Xi An Jiao Tong Univ, Sch Aerosp, State Key Lab Strength & Vibrat Mech Struct, Xian 710049, Shaanxi, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Aerosp, MOE Key Lab Multifunct Mat & Struct, Xian 710049, Shaanxi, Peoples R China
[3] Xian Univ Architecture & Technol, Sch Sci, Xian 710055, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Trampoline metamaterial; Helmholtz resonator; Vibro-acoustic localization; Piezoelectric energy harvesting; PHONONIC CRYSTAL;
D O I
10.1016/j.apm.2025.116109
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
To enhance acoustic piezoelectric energy harvesting at lower frequencies, this study proposes a coupled structure comprising a trampoline metamaterial and a Helmholtz resonator. The trampoline metamaterial incorporates periodically arranged composite resonant pillars embedded in a perforated thin plate. By designing a point defect in the metamaterial, vibro-acoustic energy can be intentionally confined to the defect location at the defect band frequency. Considering the amplified acoustic pressure in the Helmholtz resonator, the incorporation of the trampoline metamaterial into a Helmholtz resonant cavity enables enhanced energy localization. Initially, a mathematical model for calculating the first resonant band gap is established. The band gap and corresponding defect band frequency are then validated by comparing numerical simulation with experimental results. Subsequently, numerical simulations are conducted to investigate the influences of hole radius and coupled structure on piezoelectric energy harvesting performance. These simulations revealed that an increase in the hole radius significantly enhances vibroacoustic localization and piezoelectric conversion efficiency of the trampoline metamaterial. Furthermore, the synergistic interaction of the coupled structure between the defect state in the trampoline metamaterial and the acoustic pressure amplification in the Helmholtz resonator further enhances the energy harvesting performance. At an acoustic incident amplitude of 2 Pa and a defect band frequency of 1068.5 Hz, the coupled structure attains a maximum output voltage of 5.94 V and power of 39.10 mu W. These values demonstrate enhancements of 2.65 times and 2.80 times, respectively, compared to the uncoupled trampoline metamaterial with a hole radius of r0=1.5 mm. Such findings offer guidance for designing piezoelectric energy harvester in applications such as self-powered sensors and small electrical devices.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Finite element modeling of acoustic metamaterial based on periodic Helmholtz resonator with a membrane in the cavity
    Laly, Zacharie
    Mechefske, Christopher
    Ghinet, Sebastian
    Kone, Charly T.
    NOISE CONTROL ENGINEERING JOURNAL, 2024, 72 (06) : 514 - 542
  • [42] Advancement in piezoelectric nanogenerators for acoustic energy harvesting
    Jean, Fandi
    Khan, Muhammad Umair
    Alazzam, Anas
    Mohammad, Baker
    MICROSYSTEMS & NANOENGINEERING, 2024, 10 (01):
  • [43] Acoustic Energy Harvesting of Piezoelectric Ceramic Composites
    Figueroa, Jose, Jr.
    Staruch, Margo
    ENERGIES, 2022, 15 (10)
  • [44] The acoustic energy harvesting based on the piezoelectric effect
    Yao, M.-W. (yaomw@tongji.edu.cn), 1600, Journal of Functional Materials (45):
  • [45] Energy harvesting of a metamaterial beam with acoustic black holes
    Jia, Yuhang
    Wang, Chuankui
    Tong, Weihao
    Moshrefi-Torbati, Mohamed
    Yurchenko, Daniil
    Yang, Kai
    SMART MATERIALS AND STRUCTURES, 2025, 34 (01)
  • [46] Design And Simulation of MEMS Helmholtz Resonator for Acoustic Energy Harvester
    bin Johari, Muhammad Jabrullah
    Ab Rahim, Rosminazuin
    PROCEEDINGS OF 6TH INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION ENGINEERING (ICCCE 2016), 2016, : 505 - 510
  • [47] Helmholtz Resonator for Lead Zirconate Titanate Acoustic Energy Harvester
    Matsuda, Tomohiro
    Tomii, Kazuki
    Hagiwara, Saori
    Miyake, Shuntaro
    Hasegawa, Yuichi
    Sato, Takamitsu
    Kaneko, Yuta
    Nishioka, Yasushiro
    13TH INTERNATIONAL CONFERENCE ON MICRO AND NANOTECHNOLOGY FOR POWER GENERATION AND ENERGY CONVERSION APPLICATIONS (POWERMEMS 2013), 2013, 476
  • [48] A panel acoustic energy harvester based on the integration of acoustic metasurface and Helmholtz resonator
    Cui, Xiaobin
    Shi, Jinjie
    Liu, Xiaozhou
    Lai, Yun
    APPLIED PHYSICS LETTERS, 2021, 119 (25)
  • [49] Nonlinear analysis of flexoelectric acoustic energy harvesters with Helmholtz resonator
    Cao, Z.
    Wang, K. F.
    Wang, B. L.
    APPLIED MATHEMATICAL MODELLING, 2024, 129 : 633 - 654
  • [50] Enhanced magnetically coupled rotational piezoelectric energy harvesting based on tailored centrifugal distance
    Zhang, Yunshun
    Wang, Xin
    Wang, Wanshu
    SMART MATERIALS AND STRUCTURES, 2024, 33 (05)