18F-FDG PET/CT radiomic analysis and artificial intelligence to predict pathological complete response after neoadjuvant chemotherapy in breast cancer patients

被引:8
作者
Urso, Luca [1 ,2 ]
Manco, Luigi [3 ]
Cittanti, Corrado [1 ,2 ]
Adamantiadis, Sara [1 ,2 ]
Szilagyi, Klarisa Elena [3 ]
Scribano, Giovanni [4 ]
Mindicini, Noemi [5 ]
Carnevale, Aldo [1 ]
Bartolomei, Mirco [2 ]
Giganti, Melchiore [1 ]
机构
[1] Univ Ferrara, Dept Translat Med, Ferrara, Italy
[2] Univ Hosp Ferrara, Onco Hematol Dept, Nucl Med Unit, Via Aldo Moro 8, I-44124 Ferarra, Italy
[3] Univ Hosp Ferrara, Med Phys Unit, Ferrara, Italy
[4] Univ Ferrara, Dept Phys & Earth Sci, Ferrara, Italy
[5] Univ Hosp Ferrara, Oncol Unit, Ferrara, Italy
来源
RADIOLOGIA MEDICA | 2025年 / 130卷 / 04期
关键词
Breast cancer; Neoadjuvant chemotherapy; F-18-FDG; PET/CT; Radiomics; Machine learning; Artificial intelligence; SUBTYPE; MRI;
D O I
10.1007/s11547-025-01958-4
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose Build machine learning (ML) models able to predict pathological complete response (pCR) after neoadjuvant chemotherapy (NAC) in breast cancer (BC) patients based on conventional and radiomic signatures extracted from baseline [F-18]FDG PET/CT. Material and methods Primary tumor and the most significant lymph node metastasis were manually segmented in baseline [F-18]FDG PET/CT of 52 newly diagnosed BC patients. Clinical parameters, NAC and conventional semiquantitative PET parameters were collected. The standard of reference considered was surgical pCR after NAC (ypT0;ypN0). Eight-hundred-fifty-four radiomic features (RFts) were extracted from both PET and CT datasets, according to IBSI; robust RFTs were selected. The cohort was split in training (70%) and validation (30%) sets. Four ML Models (Clinical Model, CT Model, PET Model_T and PET Model_T + N) each one with 3 learners (Random Forest (RF), Neural Network and Stochastic Gradient Descendent) were trained and tested using RFts and clinical signatures. PET Models were built considering robust RFTs extracted from either primary tumor alone (PET Model_T) or also including the reference lymph node (PET Model_T + N). Results 72 pathological uptakes (52 primary BC and 20 lymph node metastasis) at [F-18]FDG PET/CT were segmented. pCR occurred in 44.2% cases. Twelve, 46 and 141 robust RFts were selected from CT Model, PET Model_T and PET Model_T + N, respectively. PET Models showed better performance than CT and Clinical Models. The best performances were obtained by the RF algorithm of the PET Model_T + N (AUC = 0.83;CA = 0.74;TP = 78%;TN = 72%). Conclusion ML models trained on PET/CT radiomic features extracted from primary BC and lymph node metastasis could concur in the prediction of pCR after NAC and improve BC management.
引用
收藏
页码:543 / 554
页数:12
相关论文
共 40 条
[1]   Long-term outcomes for neoadjuvant versus adjuvant chemotherapy in early breast cancer: meta-analysis of individual patient data from ten randomised trials [J].
Alberro, J. A. ;
Ballester, B. ;
Deulofeu, P. ;
Fabregas, R. ;
Fraile, M. ;
Gubern, J. M. ;
Janer, J. ;
Moral, A. ;
de Pablo, J. L. ;
Penalva, G. ;
Puig, P. ;
Ramos, M. ;
Rojo, R. ;
Santesteban, P. ;
Serra, C. ;
Sola, M. ;
Solarnau, L. ;
Solsona, J. ;
Veloso, E. ;
Vidal, S. ;
Abe, O. ;
Abe, R. ;
Enomoto, K. ;
Kikuchi, K. ;
Koyama, H. ;
Masuda, H. ;
Nomura, Y. ;
Ohashi, Y. ;
Sakai, K. ;
Sugimachi, K. ;
Toi, M. ;
Tominaga, T. ;
Uchino, J. ;
Yoshida, M. ;
Coles, C. E. ;
Haybittle, J. L. ;
Moebus, V. ;
Leonard, C. F. ;
Calais, G. ;
Garaud, P. ;
Collett, V. ;
Davies, C. ;
Delmestri, A. ;
Sayer, J. ;
Harvey, V. J. ;
Holdaway, I. M. ;
Kay, R. G. ;
Mason, B. H. ;
Forbe, J. F. ;
Franci, P. A. .
LANCET ONCOLOGY, 2018, 19 (01) :27-39
[2]   PET/CT radiomics in breast cancer: promising tool for prediction of pathological response to neoadjuvant chemotherapy [J].
Antunovic, Lidija ;
De Sanctis, Rita ;
Cozzi, Luca ;
Kirienko, Margarita ;
Sagona, Andrea ;
Torrisi, Rosalba ;
Tinterri, Corrado ;
Santoro, Armando ;
Chiti, Arturo ;
Zelic, Renata ;
Sollini, Martina .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2019, 46 (07) :1468-1477
[3]   The Diagnostic Performance of DCE-MRI in Evaluating the Pathological Response to Neoadjuvant Chemotherapy in Breast Cancer: A Meta-Analysis [J].
Cheng, Qingqing ;
Huang, Jiaxi ;
Liang, Jianye ;
Ma, Mengjie ;
Ye, Kunlin ;
Shi, Changzheng ;
Luo, Liangping .
FRONTIERS IN ONCOLOGY, 2020, 10
[4]   Early prediction of neoadjuvant chemotherapy response for advanced breast cancer using PET/MRI image deep learning [J].
Choi, Joon Ho ;
Kim, Hyun-Ah ;
Kim, Wook ;
Lim, Ilhan ;
Lee, Inki ;
Byun, Byung Hyun ;
Noh, Woo Chul ;
Seong, Min-Ki ;
Lee, Seung-Sook ;
Kim, Byung Il ;
Choi, Chang Woon ;
Lim, Sang Moo ;
Woo, Sang-Keun .
SCIENTIFIC REPORTS, 2020, 10 (01)
[5]   Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis [J].
Cortazar, Patricia ;
Zhang, Lijun ;
Untch, Michael ;
Mehta, Keyur ;
Costantino, Joseph P. ;
Wolmark, Norman ;
Bonnefoi, Herve ;
Cameron, David ;
Gianni, Luca ;
Valagussa, Pinuccia ;
Swain, Sandra M. ;
Prowell, Tatiana ;
Loibl, Sibylle ;
Wickerham, D. Lawrence ;
Bogaerts, Jan ;
Baselga, Jose ;
Perou, Charles ;
Blumenthal, Gideon ;
Blohmer, Jens ;
Mamounas, Eleftherios P. ;
Bergh, Jonas ;
Semiglazov, Vladimir ;
Justice, Robert ;
Eidtmann, Holger ;
Paik, Soonmyung ;
Piccart, Martine ;
Sridhara, Rajeshwari ;
Fasching, Peter A. ;
Slaets, Leen ;
Tang, Shenghui ;
Gerber, Bernd ;
Geyer, Charles E., Jr. ;
Pazdur, Richard ;
Ditsch, Nina ;
Rastogi, Priya ;
Eiermann, Wolfgang ;
von Minckwitz, Gunter .
LANCET, 2014, 384 (9938) :164-172
[6]   Neoadjuvant chemotherapy in breast cancer: more than just downsizing [J].
Derks, Marloes G. M. ;
van de Velde, Cornelis J. H. .
LANCET ONCOLOGY, 2018, 19 (01) :2-3
[7]   FDG PET/CT radiomics as a tool to differentiate between reactive axillary lymphadenopathy following COVID-19 vaccination and metastatic breast cancer axillary lymphadenopathy: a pilot study [J].
Eifer, Michal ;
Pinian, Hodaya ;
Klang, Eyal ;
Alhoubani, Yousef ;
Kanana, Nayroz ;
Tau, Noam ;
Davidson, Tima ;
Konen, Eli ;
Catalano, Onofrio A. ;
Eshet, Yael ;
Domachevsky, Liran .
EUROPEAN RADIOLOGY, 2022, 32 (09) :5921-5929
[8]   PET Radiomics and Response to Immunotherapy in Lung Cancer: A Systematic Review of the Literature [J].
Evangelista, Laura ;
Fiz, Francesco ;
Laudicella, Riccardo ;
Bianconi, Francesco ;
Castello, Angelo ;
Guglielmo, Priscilla ;
Liberini, Virginia ;
Manco, Luigi ;
Frantellizzi, Viviana ;
Giordano, Alessia ;
Urso, Luca ;
Panareo, Stefano ;
Palumbo, Barbara ;
Filippi, Luca .
CANCERS, 2023, 15 (12)
[9]   FDG PET/CT Volume-Based Quantitative Data and Survival Analysis in Breast Cancer Patients: A Systematic Review of the Literature [J].
Evangelista, Laura ;
Urso, Luca ;
Caracciolo, Matteo ;
Stracuzzi, Federica ;
Panareo, Stefano ;
Cistaro, Angelina ;
Catalano, Onofrio .
CURRENT MEDICAL IMAGING, 2023, 19 (08) :807-816
[10]   Could semiquantitative FDG analysis add information to the prognosis in patients with stage II/III breast cancer undergoing neoadjuvant treatment? [J].
Evangelista, Laura ;
Cervino, Anna Rita ;
Ghiotto, Cristina ;
Saibene, Tania ;
Michieletto, Silvia ;
Fernando, Bozza ;
Orvieto, Enrico ;
Guarneri, Valentina ;
Conte, Pierfranco .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2015, 42 (11) :1648-1655