Miniaturized Optical Glucose Sensor Using 1600-1700 nm Near-Infrared Light

被引:0
作者
Yang, Mingjie [1 ,2 ,3 ]
Dhanabalan, Shanmuga Sundar [1 ,2 ]
Robel, Md Rokunuzzaman [1 ,2 ]
Thekkekara, Litty Varghese [1 ,2 ,3 ]
Mahasivam, Sanje [4 ]
Rahman, Md Ataur [1 ,2 ]
Borkhatariya, Sagar [1 ,2 ]
Sen, Suvankar [1 ,2 ]
Walia, Sumeet [1 ,2 ,5 ]
Sriram, Sharath [1 ,2 ,3 ]
Bhaskaran, Madhu [1 ,2 ,3 ]
机构
[1] RMIT Univ, Funct Mat & Microsyst Res Grp, Melbourne, Vic 3001, Australia
[2] RMIT Univ, Micro Nano Res Facil, Melbourne, Vic 3001, Australia
[3] RMIT Univ, ARC Ctr Excellence Transformat Meta Opt Syst, Melbourne, VIC 3001, Australia
[4] RMIT Univ, Sir Ian Potter NanoBioSensing Facil, Melbourne, Vic 3001, Australia
[5] RMIT Univ, Sch Engn, Melbourne, Vic 3001, Australia
来源
ADVANCED SENSOR RESEARCH | 2025年 / 4卷 / 03期
关键词
glucose monitoring; near-infrared spectroscopy; optical absorbance; optical glucose detection; wearable device; NORMAL-COORDINATE ANALYSIS; BLOOD-GLUCOSE; RAMAN-SPECTROSCOPY; DIABETES MANAGEMENT; HUMAN SKIN; IDENTIFICATION; SYSTEMS; MODES;
D O I
暂无
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Blood glucose measurement is crucial for diabetes diagnosis and treatment, but invasive sampling methods have drawbacks. Non-invasive near-infrared (NIR) spectroscopy-based optical glucose sensing has gained attention but faces challenges due to the strong absorbance of NIR light by water and the need for complex equipment. Here, four distinct glucose fingerprints at specific NIR wavelengths: 1605, 1706, 2145, and 2275 nm are identified. Utilizing a surface-mounted LED with a spectral range of 1600-1700 nm and focusing on the most prominent peaks at 1605 and 1706 nm, a miniaturized and non-invasive glucose sensor is developed. The device successfully detects in vitro assays of glucose solutions within the physiological range of 50-400 mg dL-1, attaining a limit of detection as low as 10 mg dL-1. The findings demonstrate the feasibility of NIR spectroscopy-based glucose sensing and its potential applications in non-invasive point-of-care diagnostics, with the potential for extension to other biomarkers in future.
引用
收藏
页数:12
相关论文
共 79 条
  • [1] A. D. Association, 2004, Diabetes Care, V27, ps5
  • [2] Recent advances in optical sensors for continuous glucose monitoring
    Ahmed, Israr
    Jiang, Nan
    Shao, Xinge
    Elsherif, Mohamed
    Alam, Fahad
    Salih, Ahmed
    Butt, Haider
    Yetisen, Ali K.
    [J]. SENSORS & DIAGNOSTICS, 2022, 1 (06): : 1098 - 1125
  • [3] A Review of Non-Invasive Optical Systems for Continuous Blood Glucose Monitoring
    Alsunaidi, Bushra
    Althobaiti, Murad
    Tamal, Mahbubunnabi
    Albaker, Waleed
    Al-Naib, Ibraheem
    [J]. SENSORS, 2021, 21 (20)
  • [4] American Diabetes Association, 2021, Clin Diabetes, V39, P14, DOI 10.2337/cd21-as01
  • [5] Selective photothermolysis of lipid-rich tissues: A free electron laser study
    Anderson, R. Rox
    Farinelli, William
    Laubach, Hans
    Manstein, Dieter
    Yaroslavsky, Anna N.
    Gubeli, Joseph, III
    Jordan, Kevin
    Neil, George R.
    Shinn, Michelle
    Chandler, Walter
    Williams, Gwyn P.
    Benson, Steven V.
    Douglas, David R.
    Dylla, H. F.
    [J]. LASERS IN SURGERY AND MEDICINE, 2006, 38 (10) : 913 - 919
  • [6] Arnold Mark A, 2007, J Diabetes Sci Technol, V1, P454
  • [7] Non-invasive wearable electrochemical sensors: a review
    Bandodkar, Amay J.
    Wang, Joseph
    [J]. TRENDS IN BIOTECHNOLOGY, 2014, 32 (07) : 363 - 371
  • [8] IR-spectroscopy of skin in vivo: Optimal skin sites and properties for non-invasive glucose measurement by photoacoustic and photothermal spectroscopy
    Bauer, Alexander
    Hertzberg, Otto
    Kuederle, Arne
    Strobel, Dominik
    Pleitez, Miguel A.
    Maentele, Werner
    [J]. JOURNAL OF BIOPHOTONICS, 2018, 11 (01)
  • [9] Be K. B., 2022, Foods, V11, P1465
  • [10] Clinical performance of a low cost near infrared sensor for continuous glucose monitoring applied with subcutaneous microdialysis
    Ben Mohammadi, Lhoucine
    Klotzbuecher, T.
    Sigloch, S.
    Welzel, K.
    Goeddel, M.
    Pieber, T. R.
    Schaupp, L.
    [J]. BIOMEDICAL MICRODEVICES, 2015, 17 (04)