Two-qubit gate with macroscopic singlet-triplet qubits in synthetic spin-one chains in InAsP quantum dot nanowires

被引:0
作者
Allami, Hassan [1 ]
Miravet, Daniel [1 ]
Korkusinski, Marek [1 ,2 ]
Hawrylak, Pawel [1 ]
机构
[1] Univ Ottawa, Dept Phys, Ottawa, ON K1N 6N5, Canada
[2] CNR, Secur & Disrupt Technol, Ottawa, ON K1A 0R6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
INFORMATION; COMPUTATION;
D O I
10.1103/PhysRevB.111.115403
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a theory of a two-qubit gate with macroscopic singlet-triplet (ST) qubits in synthetic spin-one chains in InAsP quantum dot nanowires. The macroscopic topologically protected singlet-triplet qubits are built with two spin-half Haldane quasiparticles. The Haldane quasiparticles are hosted by a synthetic spin-one chain realized in chains of InAsP quantum dots embedded in an InP nanowire, with four electrons each. The quantum dot nanowire is described by a Hubbard-Kanamori (HK) Hamiltonian derived from an interacting atomistic model. Using exact diagonalization and matrix product states tools, we demonstrate that the low-energy behavior of the HK Hamiltonian is effectively captured by an antiferromagnetic spin-one chain Hamiltonian. Next, we consider two macroscopic qubits and present a method for creating a tunable coupling between the two macroscopic qubits by inserting an intermediate control dot between the two chains. Finally, we propose and demonstrate two approaches for generating highly accurate two-ST qubit gates: (1) by controlling the length of each qubit and (2) by employing different background magnetic fields for the two qubits.
引用
收藏
页数:13
相关论文
共 57 条
[1]   RIGOROUS RESULTS ON VALENCE-BOND GROUND-STATES IN ANTIFERROMAGNETS [J].
AFFLECK, I ;
KENNEDY, T ;
LIEB, EH ;
TASAKI, H .
PHYSICAL REVIEW LETTERS, 1987, 59 (07) :799-802
[2]   Nanomaterials for Quantum Information Science and Engineering [J].
Alfieri, Adam ;
Anantharaman, Surendra B. ;
Zhang, Huiqin ;
Jariwala, Deep .
ADVANCED MATERIALS, 2023, 35 (27)
[3]  
[Anonymous], about us
[4]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[5]   Coupled quantum dots as quantum exclusive-OR gate [J].
Brum, JA ;
Hawrylak, P .
SUPERLATTICES AND MICROSTRUCTURES, 1997, 22 (03) :431-436
[6]   Hubbard model for spin-1 Haldane chains [J].
Catarina, G. ;
Fernandez-Rossier, J. .
PHYSICAL REVIEW B, 2022, 105 (08)
[7]   Using the J1-J2 quantum spin chain as an adiabatic quantum data bus [J].
Chancellor, Nicholas ;
Haas, Stephan .
NEW JOURNAL OF PHYSICS, 2012, 14
[8]   Addition spectrum of a lateral dot from Coulomb and spin-blockade spectroscopy [J].
Ciorga, M ;
Sachrajda, AS ;
Hawrylak, P ;
Gould, C ;
Zawadzki, P ;
Jullian, S ;
Feng, Y ;
Wasilewski, Z .
PHYSICAL REVIEW B, 2000, 61 (24) :16315-16318
[9]   Nobel Lecture: Topological quantum matter [J].
Duncan, F. ;
Haldane, M. .
REVIEWS OF MODERN PHYSICS, 2017, 89 (04)
[10]   Single-Shot Readout of a Solid-State Spin in a Decoherence-Free Subspace [J].
Farfurnik, D. ;
Pettit, R. M. ;
Luo, Z. ;
Waks, E. .
PHYSICAL REVIEW APPLIED, 2021, 15 (03)