Capacitively Coupled Electrical Impedance Tomography in Lung Imaging

被引:1
作者
Guo, Yuxi [1 ]
Zhu, Liying [2 ]
Wang, Minmin [3 ]
Jiang, Yandan [4 ]
Soleimani, Manuchehr [5 ]
Zhang, Maomao [1 ]
机构
[1] Univ Elect Sci & Technol China, Shenzhen Inst Adv Study, Shenzhen 518071, Peoples R China
[2] City Univ Hong Kong, Dept Biomed Engn, Hong Kong, Peoples R China
[3] Westlake Univ, Westlake Inst Optoelect, Hangzhou 310024, Peoples R China
[4] Zhejiang Univ, Coll Control Sci & Engn, State Key Lab Ind Control Technol, Hangzhou 310027, Peoples R China
[5] Univ Bath, Dept Elect & Elect Engn, Bath BA2 7AY, England
关键词
Impedance; Impedance measurement; Electrodes; Electrical impedance tomography; Monitoring; Lung; Imaging; Capacitively coupled electrical impedance tomography (CCEIT); electrical impedance tomography (EIT); lung imaging;
D O I
10.1109/JSEN.2024.3432991
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Electrical impedance tomography (EIT) has been applied in bedside respiratory monitoring since it is a nonradioactive and noninvasive method. However, adverse effects of direct skin contact limit its usage. This article proposes the application of capacitively coupled EIT (CCEIT) for lung monitoring which avoids the limitation of galvanic contact measurement by using contactless measurements suitable for wearable devices, and it could provide a comfortable and hygienic user experience. This study primarily confirms the feasibility of CCEIT in monitoring respiration through a human body experiment, showing that both magnitude and phase angle of respiratory impedance effectively reflect breathing status. Numerical simulation is conducted to further explore the effects of frequency and insulation layer on CCEIT's impedance measurements and image reconstruction through constructing a digital twin lung model coupling biomechanical and electrical fields as a novel imaging modality. The time-difference imaging based on variations in magnitude and phase angle of impedance is proposed for imaging the respiratory phases of the lungs. CCEIT shows excellent performance in lung monitoring, particularly when operating at high frequencies and with small insulating layer thickness. Utilizing phase angle of impedance yields better imaging outcomes than magnitude, and at a high frequency of 20 MHz, even a 9 mm air gap can still provide satisfactory imaging results. CCEIT has broader applications than EIT, operating over a wide frequency range and utilizing both magnitude and phase angle information of impedance. This makes it promising for more accurate lung image reconstruction and impedance measurements in lung monitoring.
引用
收藏
页码:33072 / 33082
页数:11
相关论文
共 50 条
  • [41] The Research Progress of Electrical Impedance Tomography for Lung Monitoring
    Shi, Yan
    Yang, ZhiGuo
    Xie, Fei
    Ren, Shuai
    Xu, ShaoFeng
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2021, 9
  • [42] Determination of lung area in electrical impedance tomography images
    Z Zhao
    K Möller
    D Steinmann
    J Guttmann
    Critical Care, 13 (Suppl 1):
  • [43] Study on human brain impedance imaging using electrical impedance tomography
    Xu, GZ
    Dong, GY
    Yan, WL
    Yang, QX
    PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON ELECTROMAGNETIC FIELD PROBLEMS AND APPLICATIONS, 2000, : 378 - 380
  • [44] Fetal Imaging with Dynamic Electrical Impedance Tomography Technique
    Konki, Sravan Kumar
    Khambampati, Anil Kumar
    Kim, Kyung Youn
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2019, 9 (01) : 23 - 31
  • [45] Coregistration of electrical impedance tomography and magnetic resonance imaging
    Halter, R. J.
    Manwaring, P.
    Hartov, A.
    Paulsen, K. D.
    13TH INTERNATIONAL CONFERENCE ON ELECTRICAL BIOIMPEDANCE AND THE 8TH CONFERENCE ON ELECTRICAL IMPEDANCE TOMOGRAPHY 2007, 2007, 17 : 416 - 419
  • [46] Single Cell Imaging Using Electrical Impedance Tomography
    Sun, Tao
    Tsuda, Soichiro
    Zauner, Klaus-Peter
    Morgan, Hywel
    2009 4TH IEEE INTERNATIONAL CONFERENCE ON NANO/MICRO ENGINEERED AND MOLECULAR SYSTEMS, VOLS 1 AND 2, 2009, : 858 - 863
  • [47] Reconstruction and Imaging of Intracerebral Hemorrhage by Electrical Impedance Tomography
    Wang, L.
    Liu, W. B.
    Yu, X.
    Dong, X. Z.
    Gao, F.
    2017 10TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI), 2017,
  • [48] Assessment of Differential Lung Function by Electrical Impedance Tomography
    Bruno de Lema, J.
    Serrano, Ernesto
    Feixas, Teresa
    Calaf, Nuria
    del Valle Camacho, Maria
    Riu, Pere J.
    Casan, Pere
    ARCHIVOS DE BRONCONEUMOLOGIA, 2008, 44 (08): : 408 - 412
  • [49] First real-time imaging of bronchoscopic lung volume reduction by electrical impedance tomography
    Torsani, Vinicius
    Guerreiro Cardoso, Paulo Francisco
    Borges, Joao Batista
    Gomes, Susimeire
    Moriya, Henrique Takachi
    da Cruz, Andrea Fonseca
    de Santis Santiago, Roberta Ribeiro
    Nagao, Cristopher Kengo
    Fitipaldi, Mariana Fernandes
    Beraldo, Marcelo do Amaral
    Victor, Marcus Henrique
    Mlcek, Mikulas
    Pego-Fernandes, Paulo Manuel
    Passos Amato, Marcelo Britto
    RESPIRATORY RESEARCH, 2024, 25 (01)
  • [50] Electrical impedance tomography's correlation to lung volume is not influenced by anthropometric parameters
    Marquis F.
    Coulombe N.
    Costa R.
    Gagnon H.
    Guardo R.
    Skrobik Y.
    Journal of Clinical Monitoring and Computing, 2006, 20 (3) : 201 - 207