Time/Space Separation-Based Physics-Informed Machine Learning for Spatiotemporal Modeling of Distributed Parameter Systems

被引:0
作者
Wang, Bing-Chuan [1 ]
Dai, Cong-Ling [1 ]
Wang, Yong [1 ]
Li, Han-Xiong [2 ]
机构
[1] Cent South Univ, Sch Automat, Changsha 410083, Peoples R China
[2] City Univ Hong Kong, Dept Syst Engn, Hong Kong, Peoples R China
来源
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS | 2025年 / 55卷 / 01期
基金
中国国家自然科学基金;
关键词
Distributed parameter systems; spatiotemporal modeling; time/space separation; physics-informed machine learning; THERMAL DYNAMICS; FEEDBACK-CONTROL; SPECTRAL METHODS; NEURAL-NETWORKS; KARHUNEN-LOEVE;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article introduces a novel time/space separation-based physics-informed machine learning (T/S-PIML) modeling method by making full use of the complementary strengths of the physics-informed neural network (PINN) and the time/space separation methodology. T/S-PIML is the first attempt to seamlessly integrate structural (including spatial and temporal) physical information with data for effective spatiotemporal modeling of distributed parameter systems (DPSs). With the help of the spectral method, spatial basis functions are first extracted to capture spatial physical information. Subsequently, a reduced-order system is derived to characterize the corresponding temporal physical information. Upon the structural physical information, PINN is developed for temporal modeling. Following the time/space synthesis, a small amount of sensing data is utilized to calibrate system errors. Experiments on a benchmark DPS and the thermal process of a lithium-ion battery demonstrate the effectiveness of T/S-PIML.
引用
收藏
页码:137 / 148
页数:12
相关论文
共 42 条
[11]   Physics-reserved spatiotemporal modeling of battery thermal process: Temperature prediction, parameter identification, and heat generation rate estimation [J].
He, Yan-Bo ;
Wang, Bing-Chuan ;
Deng, Hai-Peng ;
Li, Han-Xiong .
JOURNAL OF ENERGY STORAGE, 2024, 75
[12]  
HUSSAINI MY, 1987, ANNU REV FLUID MECH, V19, P339, DOI 10.1146/annurev.fl.19.010187.002011
[13]   Physics-informed machine learning [J].
Karniadakis, George Em ;
Kevrekidis, Ioannis G. ;
Lu, Lu ;
Perdikaris, Paris ;
Wang, Sifan ;
Yang, Liu .
NATURE REVIEWS PHYSICS, 2021, 3 (06) :422-440
[14]  
Kopriva DA, 2009, SCI COMPUT, P1, DOI 10.1007/978-90-481-2261-5
[15]   Modeling of distributed parameter systems for applications-A synthesized review from time-space separation [J].
Li, Han-Xiong ;
Qi, Chenkun .
JOURNAL OF PROCESS CONTROL, 2010, 20 (08) :891-901
[16]  
Li HX, 2011, INTEL SYST CONTR AUT, V50, P1, DOI 10.1007/978-94-007-0741-2
[17]  
Liu SH, 2023, Arxiv, DOI arXiv:2306.03786
[18]   A Spatiotemporal Estimation Method for Temperature Distribution in Lithium-Ion Batteries [J].
Liu, Zhen ;
Li, Han-Xiong .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2014, 10 (04) :2300-2307
[19]   A novel low-order spatiotemporal modeling method for nonlinear distributed parameter systems [J].
Lu, Xinjiang ;
Xu, Bowen ;
He, Pingzhong .
JOURNAL OF PROCESS CONTROL, 2021, 106 :84-93
[20]  
Miller K S., 2020, Partial differential equations in engineering problems