Time/Space Separation-Based Physics-Informed Machine Learning for Spatiotemporal Modeling of Distributed Parameter Systems

被引:0
作者
Wang, Bing-Chuan [1 ]
Dai, Cong-Ling [1 ]
Wang, Yong [1 ]
Li, Han-Xiong [2 ]
机构
[1] Cent South Univ, Sch Automat, Changsha 410083, Peoples R China
[2] City Univ Hong Kong, Dept Syst Engn, Hong Kong, Peoples R China
来源
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS | 2025年 / 55卷 / 01期
基金
中国国家自然科学基金;
关键词
Distributed parameter systems; spatiotemporal modeling; time/space separation; physics-informed machine learning; THERMAL DYNAMICS; FEEDBACK-CONTROL; NEURAL-NETWORKS; KARHUNEN-LOEVE;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article introduces a novel time/space separation-based physics-informed machine learning (T/S-PIML) modeling method by making full use of the complementary strengths of the physics-informed neural network (PINN) and the time/space separation methodology. T/S-PIML is the first attempt to seamlessly integrate structural (including spatial and temporal) physical information with data for effective spatiotemporal modeling of distributed parameter systems (DPSs). With the help of the spectral method, spatial basis functions are first extracted to capture spatial physical information. Subsequently, a reduced-order system is derived to characterize the corresponding temporal physical information. Upon the structural physical information, PINN is developed for temporal modeling. Following the time/space synthesis, a small amount of sensing data is utilized to calibrate system errors. Experiments on a benchmark DPS and the thermal process of a lithium-ion battery demonstrate the effectiveness of T/S-PIML.
引用
收藏
页码:137 / 148
页数:12
相关论文
共 42 条
[1]   Finite Element Simulation with Heat lines and Entropy Generation Minimization during Natural Convection within Porous Tilted Square Cavities [J].
Basak, Tanmay ;
Singh, Abhishek Kumar ;
Richard, Rini ;
Roy, S. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2013, 52 (23) :8046-8061
[2]  
Boyd JP., 2000, CHEBYSHEV FOURIER SP
[3]  
Canuto C., 2007, SCIENTIF COMPUT
[4]   Physics-informed machine learning for reduced-order modeling of nonlinear problems [J].
Chen, Wenqian ;
Wang, Qian ;
Hesthaven, Jan S. ;
Zhang, Chuhua .
JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 446
[5]  
Christofides P. D., 2002, Appl. Mech. Rev., V55, pB29
[6]   Robust output feedback control of quasi-linear parabolic PDE systems [J].
Christofides, PD ;
Baker, J .
SYSTEMS & CONTROL LETTERS, 1999, 36 (05) :307-316
[7]   Robust control of parabolic PDE systems [J].
Christofides, PD .
CHEMICAL ENGINEERING SCIENCE, 1998, 53 (16) :2949-2965
[8]   Spectral-approximation-based intelligent modeling for distributed thermal processes [J].
Deng, H ;
Li, HX ;
Chen, GR .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2005, 13 (05) :686-700
[9]   Physics-Dominated Neural Network for Spatiotemporal Modeling of Battery Thermal Process [J].
Deng, Hai-Peng ;
He, Yan-Bo ;
Wang, Bing-Chuan ;
Li, Han-Xiong .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (01) :452-460
[10]  
Fletcher C. A. J., 1984, Computational Galerkin Methods