Diffusive dissolution of α-alumina in industrial soda-lime silica glass

被引:1
作者
Yoshizawa, Fatima T. [1 ,2 ,3 ]
Garel-Laurin, Anne-Celine [1 ]
Burov, Ekaterina [1 ,2 ]
Toplis, Michael J. [3 ]
机构
[1] St Gobain Res, 41 Quai Lucien Lefranc,BP 135, F-93303 Aubervilliers, France
[2] UMR 125 CNRS St Gobain Rech, Surface Verre & Interfaces, 41 Quai Lucien Lefranc,BP 135, F-93303 Aubervilliers, France
[3] Univ Toulouse 3, Inst Rech Astrophys & Planetol, Paul Sabatier, CNRS, 14 Ave Edouard Belin, F-31400 Toulouse, France
关键词
Multicomponent diffusion; Soda-lime silica glass; Alumina; Dissolution; MULTICOMPONENT DIFFUSION; MELTS; CAO-AL2O3-SIO2; KINETICS; CALCIUM; QUARTZ;
D O I
10.1016/j.jnoncrysol.2024.123351
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This study advances the understanding of alumina dissolution mechanisms in industrial soda-lime-silica glass. Electron Probe Micro-Analysis (EPMA) revealed diffusion-controlled behavior between 1300 and 1450 degrees C, with interface melt compositions varying significantly with temperature. These variations align with thermodynamic predictions. At temperatures >= 1400 degrees C, the interface enters the peraluminous field, while at lower temperatures, it lies in the domain of excess charge-balancing cations. Compositional profiles, including uphill diffusion at >= 1400 degrees C, necessitate a multicomponent diffusion matrix approach. Two primary exchange mechanisms are identified: the first involves alumina and charge-balancing cations (mainly Mg+Ca), and the second involves silica and charge-balanced alumina. However, alumina diffusivity can be approximated using an effective binary diffusion coefficient (EBDC), which correlates with the viscosity of the interface melt, even when a viscosity maximum is present. These results emphasize the importance of multicomponent approaches to understanding mineral dissolution and diffusion, particularly in peraluminous systems.
引用
收藏
页数:12
相关论文
共 50 条
[21]   Gas release phenomena in soda-lime-silica glass [J].
Vernerova, Miroslava ;
Nemec, Lubomir ;
Klouzek, Jaroslav ;
Hujova, Miroslava .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2018, 500 :158-166
[22]   New observations on scratch deformations of soda lime silica glass [J].
Bandyopadhyay, Payel ;
Dey, Arjun ;
Mandal, Ashoke K. ;
Dey, Nitai ;
Mukhopadhyay, Anoop K. .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2012, 358 (16) :1897-1907
[23]   SODA-LIME-SILICA GLASS FOR RADIATION-DOSIMETRY [J].
EZZELDIN, FM ;
ABDELREHIM, F ;
ABDELAZIM, AA ;
AHMED, AA .
MEDICAL PHYSICS, 1994, 21 (07) :1085-1089
[24]   Electrical Properties and Scaling Behavior of MWCNT–Soda Lime Silica Glass [J].
M. H. Shaaban ;
A. A. Ali .
Journal of Electronic Materials, 2013, 42 :1047-1054
[25]   First principles molecular simulations of soda-lime-silica glass [J].
Machacek, Jan ;
Charvatova, Sona ;
Gedeon, Ondrej ;
Liska, Marek .
GLASS - THE CHALLENGE FOR THE 21ST CENTURY, 2008, 39-40 :85-+
[26]   Effect of scratching speed on deformation of soda-lime-silica glass [J].
Bandyopadhyay, Payel ;
Dey, Arjun ;
Mandal, Ashoke K. ;
Dey, Nitai ;
Roy, Sudakshina ;
Mukhopadhyay, Anoop K. .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2012, 107 (03) :685-690
[27]   GENERATION OF SECONDARY CRACKS IN TEMPERED SODA-LIME-SILICA GLASS [J].
ARATANI, S ;
YAMAUCHI, Y ;
OGINOH, K ;
TAKAHASHI, K .
NIPPON SERAMIKKUSU KYOKAI GAKUJUTSU RONBUNSHI-JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 1993, 101 (04) :506-507
[28]   H2O speciation in float glass and soda lime silica glass [J].
Stuke, A. ;
Behrens, H. ;
Schmidt, B. C. ;
Dupree, R. .
CHEMICAL GEOLOGY, 2006, 229 (1-3) :64-77
[29]   Indentation residual stresses in soda-lime and borosilicate glasses [J].
Assmann, A. ;
Foerster, C. E. ;
Serbena, F. C. .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2019, 503 :197-207
[30]   Effects of humidity and counter-surface on tribochemical wear of soda-lime-silica glass [J].
He, Hongtu ;
Qian, Linmao ;
Pantano, Carlo G. ;
Kim, Seong H. .
WEAR, 2015, 342 :100-106