Diffusive dissolution of α-alumina in industrial soda-lime silica glass

被引:0
|
作者
Yoshizawa, Fatima T. [1 ,2 ,3 ]
Garel-Laurin, Anne-Celine [1 ]
Burov, Ekaterina [1 ,2 ]
Toplis, Michael J. [3 ]
机构
[1] St Gobain Res, 41 Quai Lucien Lefranc,BP 135, F-93303 Aubervilliers, France
[2] UMR 125 CNRS St Gobain Rech, Surface Verre & Interfaces, 41 Quai Lucien Lefranc,BP 135, F-93303 Aubervilliers, France
[3] Univ Toulouse 3, Inst Rech Astrophys & Planetol, Paul Sabatier, CNRS, 14 Ave Edouard Belin, F-31400 Toulouse, France
关键词
Multicomponent diffusion; Soda-lime silica glass; Alumina; Dissolution; MULTICOMPONENT DIFFUSION; MELTS; CAO-AL2O3-SIO2; KINETICS; CALCIUM; QUARTZ;
D O I
10.1016/j.jnoncrysol.2024.123351
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This study advances the understanding of alumina dissolution mechanisms in industrial soda-lime-silica glass. Electron Probe Micro-Analysis (EPMA) revealed diffusion-controlled behavior between 1300 and 1450 degrees C, with interface melt compositions varying significantly with temperature. These variations align with thermodynamic predictions. At temperatures >= 1400 degrees C, the interface enters the peraluminous field, while at lower temperatures, it lies in the domain of excess charge-balancing cations. Compositional profiles, including uphill diffusion at >= 1400 degrees C, necessitate a multicomponent diffusion matrix approach. Two primary exchange mechanisms are identified: the first involves alumina and charge-balancing cations (mainly Mg+Ca), and the second involves silica and charge-balanced alumina. However, alumina diffusivity can be approximated using an effective binary diffusion coefficient (EBDC), which correlates with the viscosity of the interface melt, even when a viscosity maximum is present. These results emphasize the importance of multicomponent approaches to understanding mineral dissolution and diffusion, particularly in peraluminous systems.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] CORROSION OF ALUMINA-ZIRCONIA-SILICA REFRACTORIES BY SODA-LIME GLASS
    FENTZKE, AD
    ROWLAND, GR
    AMERICAN CERAMIC SOCIETY BULLETIN, 1965, 44 (04): : 369 - &
  • [2] HYDRATION OF SODA-LIME SILICATE GLASS, EFFECT OF ALUMINA
    WASSICK, TA
    DOREMUS, RH
    LANFORD, WA
    BURMAN, C
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 1983, 54 (1-2) : 139 - 151
  • [3] Mechanical characteristics of doped soda-lime silica glass
    Suszynska, M.
    Szmida, M.
    Cizman, A.
    WORLD JOURNAL OF ENGINEERING, 2012, 9 (02) : 103 - 108
  • [4] The analysis of soda-lime glass
    Lundell, GEF
    Knowles, HB
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1927, 10 (11) : 829 - 849
  • [5] HYDRATION OF SODA-LIME GLASS
    LANFORD, WA
    DAVIS, K
    LAMARCHE, P
    LAURSEN, T
    GROLEAU, R
    DOREMUS, RH
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 1979, 33 (02) : 249 - 266
  • [6] KIIIC OF SODA-LIME GLASS
    CHEN, CP
    LEIPOLD, MH
    AMERICAN CERAMIC SOCIETY BULLETIN, 1981, 60 (03): : 373 - 373
  • [7] HERTZIAN FRACTURE AND ABRASION OF QUARTZ, SILICA, AND SODA-LIME GLASS
    WILSHAW, TR
    HARTLEY, NEW
    CHEMICAL ENGINEER-LONDON, 1972, (258): : 53 - &
  • [8] CRACK EVOLUTION IN VICKERS INDENTATION FOR SODA-LIME SILICA GLASS
    HARANOH, T
    ISHIKAWA, H
    SHINKAI, N
    MIZUHASHI, M
    JOURNAL OF MATERIALS SCIENCE, 1982, 17 (05) : 1493 - 1500
  • [9] FATIGUE IN SODA-LIME SILICA GLASS - INFLUENCE OF SURFACE-TREATMENT
    DOREMUS, RH
    JOURNAL OF MATERIALS SCIENCE, 1980, 15 (12) : 2959 - 2964
  • [10] Etching of nanostructures on soda-lime glass
    Wang, Elmer
    Zhao, Yang
    OPTICS LETTERS, 2014, 39 (13) : 3748 - 3751