HyperEDL: Spectral-Spatial Evidence Deep Learning for Cross-Scene Hyperspectral Image Classification

被引:0
|
作者
Feng, Yangbo [1 ]
Yi, Xin [1 ]
Wang, Shuhe [2 ]
Yue, Jun [3 ]
Xia, Shaobo [4 ]
Fang, Leyuan [1 ]
机构
[1] Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Peoples R China
[2] Hunan Hefu Culture Technol Co Ltd, Changsha 410221, Peoples R China
[3] Cent South Univ, Sch Automat, Changsha 410083, Peoples R China
[4] Changsha Univ Sci & Technol, Dept Geomat Engn, Changsha 410114, Peoples R China
基金
中国国家自然科学基金;
关键词
Hyperspectral imaging; Uncertainty; Deep learning; Image classification; Data models; Adaptation models; Training; Feature extraction; Predictive models; Soft sensors; Cross-scene hyperspectral image (HSI) classification; evidence deep learning (EDL); multiorder contexts interaction; ADAPTATION;
D O I
10.1109/TGRS.2025.3549419
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Cross-scene hyperspectral image (HSI) classification presents significant challenges due to domain shifts, which amplify epistemic uncertainty and lead to substantial performance drops in unseen scenes. While evidence deep learning (EDL) has shown promise in modeling uncertainty, existing methods fall short, as they do not explicitly account for the epistemic uncertainty arising from spatial-spectral feature interactions. To address these challenges, we propose the spectral-spatial evidence deep learning for cross-scene hyperspectral image classification (HyperEDL) framework, which introduces the spatial-spectral multiorder aggregation module (SS-Moga). This module effectively captures and adaptively encodes multiorder contextual interactions from both spatial and spectral perspectives. By combining multiorder contextual encoding with spatial-spectral confidence, our approach fully aggregates multiorder evidence to mitigate epistemic uncertainty arising from knowledge gaps between seen and unseen scenes. Specifically, it uses Dirichlet distribution to capture correlation between spatial-spectral knowledge about different scenes, which can be generalized to unseen scenes. Extensive experiments on three benchmark datasets demonstrate that HyperEDL outperforms state-of-the-art methods, showcasing its effectiveness and strong generalization ability.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Deep Convolutional Capsule Network for Hyperspectral Image Spectral and Spectral-Spatial Classification
    Zhu, Kaiqiang
    Chen, Yushi
    Ghamisi, Pedram
    Jia, Xiuping
    Benediktsson, Jon Atli
    REMOTE SENSING, 2019, 11 (03)
  • [22] Spectral Shift Mitigation for Cross-Scene Hyperspectral Imagery Classification
    Liu, Huan
    Li, Wei
    Xia, Xiang-Gen
    Zhang, Mengmeng
    Gao, Chen-Zhong
    Tao, Ran
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 6624 - 6638
  • [23] Spectral-Spatial Response for Hyperspectral Image Classification
    Wei, Yantao
    Zhou, Yicong
    Li, Hong
    REMOTE SENSING, 2017, 9 (03):
  • [24] Deep Pyramidal Residual Networks for Spectral-Spatial Hyperspectral Image Classification
    Paoletti, Mercedes E.
    Mario Haut, Juan
    Fernandez-Beltran, Ruben
    Plaza, Javier
    Plaza, Antonio J.
    Pla, Filiberto
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (02): : 740 - 754
  • [25] A Deep Spectral-Spatial Residual Attention Network for Hyperspectral Image Classification
    Chhapariya, Koushikey
    Buddhiraju, Krishna Mohan
    Kumar, Anil
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 15393 - 15406
  • [26] Spectral-Spatial Constraint Hyperspectral Image Classification
    Ji, Rongrong
    Gao, Yue
    Hong, Richang
    Liu, Qiong
    Tao, Dacheng
    Li, Xuelong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (03): : 1811 - 1824
  • [27] CROSS-SCENE HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON DEEP CONDITIONAL DISTRIBUTION ADAPTATION NETWORKS
    Geng, Jie
    Ma, Xiaorui
    Jiang, Wen
    Hu, Xiaoyu
    Wang, Dawei
    Wang, Hongyu
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 716 - 719
  • [28] Cross-Attention Spectral-Spatial Network for Hyperspectral Image Classification
    Yang, Kai
    Sun, Hao
    Zou, Chunbo
    Lu, Xiaoqiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [29] Spectral-Spatial Mamba for Hyperspectral Image Classification
    Huang, Lingbo
    Chen, Yushi
    He, Xin
    REMOTE SENSING, 2024, 16 (13)
  • [30] Spectral-Spatial Feature Extraction for Hyperspectral Image Classification: A Dimension Reduction and Deep Learning Approach
    Zhao, Wenzhi
    Du, Shihong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (08): : 4544 - 4554