Applying Machine-Learning Methods to Laser Acceleration of Protons: Lessons Learned From Synthetic Data

被引:1
作者
Desai, Ronak [1 ]
Zhang, Thomas [1 ]
Felice, John J. [1 ]
Oropeza, Ricky [1 ]
Smith, Joseph R. [2 ]
Kryshchenko, Alona [3 ]
Orban, Chris [1 ]
Dexter, Michael L. [4 ]
Patnaik, Anil K. [4 ]
机构
[1] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA
[2] Marietta Coll, Dept Phys, Marietta, OH USA
[3] Calif State Univ Channel Isl, Dept Math, Camarillo, CA USA
[4] Air Force Inst Technol, Dept Engn Phys, Wright Patterson AFB, OH USA
基金
美国国家科学基金会;
关键词
laser-driven ion acceleration; machine learning; normal sheath acceleration; optimization; target; MULTILAYER FEEDFORWARD NETWORKS; BEAMS;
D O I
10.1002/ctpp.202400080
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In this study, we consider three different machine-learning methods-a three-hidden-layer neural network, support vector regression, and Gaussian process regression-and compare how well they can learn from a synthetic data set for proton acceleration in the Target Normal Sheath Acceleration regime. The synthetic data set was generated from a previously published theoretical model by Fuchs et al. 2005 that we modified. Once trained, these machine-learning methods can assist with efforts to maximize the peak proton energy, or with the more general problem of configuring the laser system to produce a proton energy spectrum with desired characteristics. In our study, we focus on both the accuracy of the machine-learning methods and the performance on one GPU including memory consumption. Although it is arguably the least sophisticated machine-learning model we considered, support vector regression performed very well in our tests.
引用
收藏
页数:11
相关论文
共 47 条
[1]   2022 Review of Data-Driven Plasma Science [J].
Anirudh, Rushil ;
Archibald, Rick ;
Asif, M. Salman ;
Becker, Markus M. ;
Benkadda, Sadruddin ;
Bremer, Peer-Timo ;
Bude, Rick H. S. ;
Chang, C. S. ;
Chen, Lei ;
Churchill, R. M. ;
Citrin, Jonathan ;
Gaffney, Jim A. ;
Gainaru, Ana ;
Gekelman, Walter ;
Gibbs, Tom ;
Hamaguchi, Satoshi ;
Hill, Christian ;
Humbird, Kelli ;
Jalas, Soeren ;
Kawaguchi, Satoru ;
Kim, Gon-Ho ;
Kirchen, Manuel ;
Klasky, Scott ;
Kline, John L. ;
Krushelnick, Karl ;
Kustowski, Bogdan ;
Lapenta, Giovanni ;
Li, Wenting ;
Ma, Tammy ;
Mason, Nigel J. ;
Mesbah, Ali ;
Michoski, Craig ;
Munson, Todd ;
Murakami, Izumi ;
Najm, Habib N. ;
Olofsson, K. Erik J. ;
Park, Seolhye ;
Peterson, J. Luc ;
Probst, Michael ;
Pugmire, David ;
Sammuli, Brian ;
Sawlani, Kapil ;
Scheinker, Alexander ;
Schissel, David P. ;
Shalloo, Rob J. ;
Shinagawa, Jun ;
Seong, Jaegu ;
Spears, Brian K. ;
Tennyson, Jonathan ;
Thiagarajan, Jayaraman .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2023, 51 (07) :1750-1838
[2]   Machine-learning calibration of intense x-ray free-electron-laser pulses using Bayesian optimization [J].
Breckwoldt, Niels ;
Son, Sang-Kil ;
Mazza, Tommaso ;
Roerig, Aljoscha ;
Boll, Rebecca ;
Meyer, Michael ;
LaForge, Aaron C. ;
Mishra, Debadarshini ;
Berrah, Nora ;
Santra, Robin .
PHYSICAL REVIEW RESEARCH, 2023, 5 (02)
[3]   Vibration and jitter of free-flowing thin liquid sheets as target for high-repetition-rate laser-ion acceleration [J].
Cao, Zhengxuan ;
Peng, Ziyang ;
Shou, Yinren ;
Zhao, Jiarui ;
Chen, Shiyou ;
Gao, Ying ;
Liu, Jianbo ;
Wang, Pengjie ;
Mei, Zhusong ;
Pan, Zhuo ;
Kong, Defeng ;
Qi, Guijun ;
Xu, Shirui ;
Liu, Zhipeng ;
Liang, Yulan ;
Xu, Shengxuan ;
Song, Tan ;
Chen, Xun ;
Wu, Qingfan ;
Liu, Xuan ;
Ma, Wenjun .
FRONTIERS IN PHYSICS, 2023, 11
[4]   Measurements of energetic proton transport through magnetized plasma from intense laser interactions with solids [J].
Clark, EL ;
Krushelnick, K ;
Davies, JR ;
Zepf, M ;
Tatarakis, M ;
Beg, FN ;
Machacek, A ;
Norreys, PA ;
Santala, MIK ;
Watts, I ;
Dangor, AE .
PHYSICAL REVIEW LETTERS, 2000, 84 (04) :670-673
[5]  
Diederik P., Adam: A Method for Stochastic Optimization. International Conference for Learning Representations
[6]  
San Diego2015
[7]   Transfer learning and multi-fidelity modeling of laser-driven particle acceleration [J].
Djordjevic, B. Z. ;
Kim, J. ;
Wilks, S. C. ;
Ludwig, J. ;
Myers, C. ;
Kemp, A. J. ;
Swanson, K. K. ;
Zeraouli, G. ;
Grace, E. S. ;
Simpson, R. A. ;
Rusby, D. ;
Antoine, A. F. ;
Bremer, P. -t. ;
Thiagarajan, J. ;
Anirudh, R. ;
Williams, G. J. ;
Ma, T. ;
Mariscal, D. A. .
PHYSICS OF PLASMAS, 2023, 30 (04)
[8]   Characterizing the acceleration time of laser-driven ion acceleration with data-informed neural networks [J].
Djordjevic, B. Z. ;
Kemp, A. J. ;
Kim, J. ;
Ludwig, J. ;
Simpson, R. A. ;
Wilks, S. C. ;
Ma, T. ;
Mariscal, D. A. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2021, 63 (09)
[9]   Modeling laser-driven ion acceleration with deep learning [J].
Djordjevic, B. Z. ;
Kemp, A. J. ;
Kim, J. ;
Simpson, R. A. ;
Wilks, S. C. ;
Ma, T. ;
Mariscal, D. A. .
PHYSICS OF PLASMAS, 2021, 28 (04)
[10]   Data-driven science and machine learning methods in laser-plasma physics [J].
Doepp, Andreas ;
Eberle, Christoph ;
Howard, Sunny ;
Irshad, Faran ;
Lin, Jinpu ;
Streeter, Matthew .
HIGH POWER LASER SCIENCE AND ENGINEERING, 2023, 11