A new granule extrusion-based for 3D printing of POE: studying the effect of printing parameters on mechanical properties with "response surface methodology"

被引:0
|
作者
Gao, Xiangyu [1 ]
Yao, Tianqi [2 ]
Gao, Fanru [3 ]
Chen, Yixue [3 ]
Jian, Xiangzhou [4 ]
Ma, Haowei [3 ]
机构
[1] Univ Sains Malaysia, Sch Mat & Mineral Resources Engn, Engn Campus, Nibong Tebal Penang 14300, Malaysia
[2] Sinopec Engn Inc, Civil Dept, Beijing 100101, Peoples R China
[3] Case Western Reserve Univ, Dept Mech & Aerosp Enginerring, Cleveland, OH 44106 USA
[4] Columbia Univ, Dept Mech Engn, New York, NY 10027 USA
关键词
Additive manufacturing; Polyolefin elastomers (POE); Fused deposition modeling (FDM); Box-Behnken design (BBD); Mechanical properties; Scanning electron microscopy "SEM; PARTS; BEHAVIOR;
D O I
10.1007/s13726-024-01405-7
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Printing elastomers face major challenges due to properties such as high melt strength, high shrinkage rate, and the potential for buckling during printing. This paper introduces the first use of pellet extrusion-based "fused deposition modeling" (FDM) for directly printing polyolefin elastomers (POE). In addition, the impact of critical parameters in this printing process (speed, nozzle temperature, and diameter) was investigated using Box-Behnken design (BBD). The analysis of variance (ANOVA) revealed that most factors had P values below 0.05, indicating their significant influence on the results. The P values for ultimate tensile strength (UTS), elongation, and modulus of elasticity model were 0.0118, 0.0001, and 0.007, respectively. Experimental results demonstrated UTS values ranging from 2.76 to 4.88 MPa and elongation values ranging from 1575 to 2788%. Scanning electron microscopy (SEM) imaging of fracture cross-sections showed acceptable quality of printed samples, although the upper layers of the bed exhibited noticeable shrinkage. Increasing the speed and reducing the nozzle temperature can effectively decrease the cooling rate, enhancing adhesion quality and reducing microholes, as long as it does not negatively impact the feeding rate. These findings, which demonstrate the ability to print high-quality elastomeric parts and overcome printing limitations, have the potential to attract more attention and expand the printing of functional elastomers in various fields.
引用
收藏
页码:739 / 750
页数:12
相关论文
共 50 条
  • [1] Reactive Processing in Extrusion-Based 3D Printing to Improve Isotropy and Mechanical Properties
    Levenhagen, Neiko P.
    Dadmun, Mark D.
    MACROMOLECULES, 2019, 52 (17) : 6495 - 6501
  • [2] Extrusion-based 3D printing of ceramic components
    Faes, M.
    Valkenaers, H.
    Vogeler, F.
    Vleugels, J.
    Ferraris, E.
    3RD CIRP GLOBAL WEB CONFERENCE - PRODUCTION ENGINEERING RESEARCH ADVANCEMENT BEYOND STATE OF THE ART (CIRPE2014), 2015, 28 : 76 - 81
  • [3] Microfluidics: A New Layer of Control for Extrusion-Based 3D Printing
    Serex, Ludovic
    Bertsch, Arnaud
    Renaud, Philippe
    MICROMACHINES, 2018, 9 (02)
  • [4] Effect of printing parameters and post-process on surface roughness and dimensional deviation of PLA parts fabricated by extrusion-based 3D printing
    Emre Taşcıoğlu
    Özhan Kıtay
    Ali Özkan Keskin
    Yusuf Kaynak
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44
  • [5] Effect of printing parameters and post-process on surface roughness and dimensional deviation of PLA parts fabricated by extrusion-based 3D printing
    Tascioglu, Emre
    Kitay, Ozhan
    Keskin, Ali Ozkan
    Kaynak, Yusuf
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2022, 44 (04)
  • [6] Extrusion-Based 3D Printing Applications of PLA Composites: A Review
    Tumer, Eda Hazal
    Erbil, Husnu Yildirim
    COATINGS, 2021, 11 (04)
  • [7] A green extrusion-based 3D printing of hierarchically porous aluminum
    Tang, Shiyan
    Yang, Yaru
    Yang, Li
    Fan, Zitian
    POWDER TECHNOLOGY, 2022, 399
  • [8] Effect of Nanostructured Silica Additives on the Extrusion-Based 3D Concrete Printing Application
    Liu, Zhenbang
    Li, Mingyang
    Moo, Guo Sheng James
    Kobayashi, Hitoshi
    Wong, Teck Neng
    Tan, Ming Jen
    JOURNAL OF COMPOSITES SCIENCE, 2023, 7 (05):
  • [9] Effect of printing parameters on the extrusion 3D printing of oleogel-based nutraceuticals
    De Salvo, M. Itati
    Palla, Camila A.
    Cotabarren, Ivana M.
    JOURNAL OF FOOD ENGINEERING, 2023, 349
  • [10] Hyaluronic acid as a bioink for extrusion-based 3D printing
    Petta, D.
    D'Amora, U.
    Ambrosio, L.
    Grijpma, D. W.
    Eglin, D.
    D'Este, M.
    BIOFABRICATION, 2020, 12 (03)