Automated CTC Identification Using improved GAN Model

被引:0
|
作者
Sandanam, Kavitha [1 ]
Sivalingam, Raghuraman [2 ]
机构
[1] Anna Univ, Chennai, India
[2] Velammal Engn Coll, Dept ECE, Chennai, India
关键词
CTC; GAN; STO; PSPNet; CIRCULATING TUMOR-CELLS; IMAGES;
D O I
10.1007/s42835-024-02115-z
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This work proposed a novel Generative Adversarial Network (GAN) methodology to identify the Circulating Tumor Cells (CTCs) using a medical image. The proposed GAN model integrates a modified Pyramid Scene Parsing Network (PSPNet) as a generator and an EfficientNet as a discriminator. The modified PSPNet has an attention mechanism to process an efficient feature extraction that is used to capture intricate spatial data from CTC images. Also on the discriminator side, it has a regulator unit in EfficientNet named RegEfficientNet that is introduced for effective CTCs detection. This discriminator is processed to distinguish between genuine CTCs and false positives effectively to attain a valuable component in the GAN architecture. To achieve an optimal solution in result, Modified Siberian Tiger Optimization (MSTO) is used to optimize and fine-tune the GAN model's parameters. The Experimental results show that the proposed GAN model achieves better in terms of all metrics namely accuracy, sensitivity, F1 score and specificity than conventional methods respectively.
引用
收藏
页码:2663 / 2673
页数:11
相关论文
共 50 条
  • [41] A Framework for Phoneme-Level Pronunciation Assessment Using CTC
    Cao, Xinwei
    Fan, Zijian
    Svendsen, Torbjorn
    Salvi, Giampiero
    INTERSPEECH 2024, 2024, : 302 - 306
  • [42] An improved TB method for the AlGaN/GaN superlattice
    Chen, Junfeng
    Yu, Xiangzhen
    CHEMICAL ENGINEERING AND MATERIAL PROPERTIES II, 2012, 549 : 41 - 44
  • [43] The identification of a TNBC liver metastasis gene signature by sequential CTC-xenograft modeling
    Vishnoi, Monika
    Liu, Nikki Haowen
    Yin, Wei
    Boral, Debasish
    Scamardo, Antonio
    Hong, David
    Marchetti, Dario
    MOLECULAR ONCOLOGY, 2019, 13 (09) : 1913 - 1926
  • [44] DeepIDX: sophisticated IDS model using the generative adversarial network (GAN) algorithm
    Nurhadi Wijaya
    Marselina Endah Hiswati
    Sarah Anjani
    Iran Journal of Computer Science, 2022, 5 (3) : 197 - 204
  • [45] Semi-automated identification of cones in the human retina using circle Hough transform
    Bukowska, Danuta M.
    Chew, Avenell L.
    Emily Huynh
    Kashani, Irwin
    Wan, Sue Ling
    Wan, Pak Ming
    Chen, Fred K.
    BIOMEDICAL OPTICS EXPRESS, 2015, 6 (12): : 4676 - 4693
  • [46] CS-MRI Reconstruction Using an Improved GAN with Dilated Residual Networks and Channel Attention Mechanism
    Li, Xia
    Zhang, Hui
    Yang, Hao
    Li, Tie-Qiang
    SENSORS, 2023, 23 (18)
  • [47] Identification of Seven Novel Mutations in the GAN Gene
    Bomont, P.
    Ioos, C.
    Yalcinkaya, C.
    Korinthenberg, R.
    Vallat, J. M.
    Assami, S.
    Munnich, A.
    Chabrol, B.
    Kurlemann, G.
    Tazir, M.
    Koenig, M.
    HUMAN MUTATION, 2003, 21 (04)
  • [48] Improved AlGaN/GaN HEMTs Grown on Si Substrates Using Stacked AlGaN/AlN Interlayer by MOCVD
    Wang Yong
    Yu Nai-Sen
    Li Ming
    Lau Kei-May
    CHINESE PHYSICS LETTERS, 2011, 28 (05)
  • [49] A Broadband High-Efficiency GaN-Based Power Amplifier Using an Improved Continuous Mode
    Zhu, Haipeng
    Zhang, Zhiwei
    Gu, Chao
    IEICE ELECTRONICS EXPRESS, 2023, 20 (08):
  • [50] Identification of shallow acceptors in epitaxial GaN:Si
    Korzhavina, Natalia S.
    Shamirzaev, Timur S.
    Zhuravlev, Constantin S.
    Mansurov, Vladimir G.
    Nikitin, Andrey U.
    Toropov, Alexander I.
    EDM 2007: 8TH INTERNATIONAL WORKSHOP AND TUTORIALS ON ELECTRON DEVICES AND MATERIALS, 2007, : 61 - 63