Curvature structure triboelectric nanogenerator for harvesting human motion energy and cheerleading training monitoring

被引:0
|
作者
Wang, Jing [1 ]
Feng, Anchao [2 ]
机构
[1] Capital Normal Univ, Dept Phys Educ, Beijing 100048, Peoples R China
[2] Beijing Univ Chem Technol, State Key Lab Organ Inorgan Composites, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
SENSOR NETWORK; PAPER;
D O I
10.1063/5.0241082
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Recently, self-powered wearable sports monitoring devices have garnered widespread attention. However, earlier sensor devices suffer from limitations such as single-mode operation, unstable output, and high power consumption. In this study, we leveraged the curvature effect to enhance the performance of triboelectric nanogenerators (C-TENGs) for harvesting micro-mechanical energy. The C-TENG demonstrated an open-circuit voltage (V-oc) of 507.07 V, a short-circuit current (I-sc) of 80.03 mu A, and a transfer charge (Q(sc)) of 100.47 nC. Additionally, the C-TENG achieved a high output power of 3.22 mW with a 4 M Omega external resistor. Furthermore, a C-TENG sensor array embedded in shoes can monitor the cheerleading performer's gait by analyzing the differences in signals from three C-TENG sensors. This includes detecting slow walking, brisk walking, and jumping. This innovative sensing design differs from previous single-signal outputs and effectively avoids sensing errors caused by sensor fatigue and loss.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Noncontact triboelectric nanogenerator for human motion monitoring and energy harvesting
    Xi, Yinhu
    Hua, Jing
    Shi, Yijun
    NANO ENERGY, 2020, 69
  • [2] Natural polymers based triboelectric nanogenerator for harvesting biomechanical energy and monitoring human motion
    Chen, Hong
    Lu, Qixin
    Cao, Xia
    Wang, Ning
    Wang, Zhonglin
    NANO RESEARCH, 2022, 15 (03) : 2505 - 2511
  • [3] Natural polymers based triboelectric nanogenerator for harvesting biomechanical energy and monitoring human motion
    Hong Chen
    Qixin Lu
    Xia Cao
    Ning Wang
    Zhong Lin Wang
    Nano Research, 2022, 15 : 2505 - 2511
  • [4] A pipe arrangement structure triboelectric nanogenerator for mechanical energy harvesting and sports training monitoring
    Duan, Zhiyuan
    Ge, Nan
    Hong-Kwan, Cho
    Sin-Young, Song
    APL MATERIALS, 2024, 12 (03)
  • [5] Triboelectric Nanogenerator Based on Copper Foam with Graded Porous Architectures for Energy Harvesting and Human Motion Monitoring
    Li, Hui
    Hu, Xinyi
    Li, Changgen
    Sun, Yannan
    Jiang, Hongwei
    Zhou, Rui
    Wu, Xiaoyu
    Tang, Yong
    Ding, Xinrui
    ACS APPLIED NANO MATERIALS, 2023, 6 (13) : 12095 - 12104
  • [6] A flexible PI/MXene triboelectric nanogenerator for energy harvesting and motion monitoring in table tennis
    Xu, Dazhong
    Ma, Xiaoxin
    Ma, Yong
    AIP ADVANCES, 2025, 15 (01)
  • [7] An air-cushion triboelectric nanogenerator integrated with stretchable electrode for human-motion energy harvesting and monitoring
    Zhang, Zengxing
    Du, Kang
    Chen, Xi
    Xue, Chenyang
    Wang, Kaiying
    NANO ENERGY, 2018, 53 : 108 - 115
  • [8] Triboelectric nanogenerator with a seesaw structure for harvesting ocean energy
    Cheng, Jiahui
    Zhang, Xiaolong
    Jia, Tingwei
    Wu, Qian
    Dong, Yang
    Wang, Daoai
    NANO ENERGY, 2022, 102
  • [9] A Skin-Inspired Triboelectric Nanogenerator with an Interpenetrating Structure for Motion Sensing and Energy Harvesting
    You, Aimei
    Zhang, Xieli
    Peng, Xiao
    Dong, Kai
    Lu, Yuyuan
    Zhang, Qiang
    MACROMOLECULAR MATERIALS AND ENGINEERING, 2021, 306 (08)
  • [10] Wearable bistable triboelectric nanogenerator for harvesting torsional vibration energy from human motion
    Tan, Dongguo
    Zhou, Jiaxi
    Wang, Kai
    Zhang, Chen
    Li, Zeyi
    Xu, Daolin
    NANO ENERGY, 2023, 109