Quantile Regression under Truncated, Censored and Dependent Assumptions

被引:0
|
作者
Changsheng LIU [1 ]
Yunjiao LU [2 ]
Sili NIU [2 ]
机构
[1] School of Mathematics and Physics, Henan University of Urban Construction
[2] School of Mathematical Sciences, Tongji
关键词
D O I
暂无
中图分类号
O212.1 [一般数理统计];
学科分类号
摘要
In this paper, we focus on the problem of nonparametric quantile regression with left-truncated and right-censored data. Based on Nadaraya-Watson(NW) Kernel smoother and the technique of local linear(LL) smoother, we construct the NW and LL estimators of the conditional quantile. Under strong mixing assumptions, we establish asymptotic representation and asymptotic normality of the estimators. Finite sample behavior of the estimators is investigated via simulation, and a real data example is used to illustrate the application of the proposed methods.
引用
收藏
页码:479 / 497
页数:19
相关论文
共 50 条
  • [21] Censored quantile regression redux
    Koenker, Roger
    JOURNAL OF STATISTICAL SOFTWARE, 2008, 27 (06): : 1 - 25
  • [22] Envelopes for censored quantile regression
    Zhao, Yue
    Van Keilegom, Ingrid
    Ding, Shanshan
    SCANDINAVIAN JOURNAL OF STATISTICS, 2022, 49 (04) : 1562 - 1585
  • [23] Functional Censored Quantile Regression
    Jiang, Fei
    Cheng, Qing
    Yin, Guosheng
    Shen, Haipeng
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2020, 115 (530) : 931 - 944
  • [24] QUANTILE CALCULUS AND CENSORED REGRESSION
    Huang, Yijian
    ANNALS OF STATISTICS, 2010, 38 (03): : 1607 - 1637
  • [25] Weighted censored quantile regression
    Vasudevan, Chithran
    Variyath, Asokan Mulayath
    Fan, Zhaozhi
    SURVEY METHODOLOGY, 2019, 45 (01) : 127 - 144
  • [26] Censored Quantile Regression Forest
    Li, Alexander Hanbo
    Bradic, Jelena
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108 : 2109 - 2118
  • [27] Support vector censored quantile regression under random censoring
    Shim, Jooyong
    Hwang, Changha
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (04) : 912 - 919
  • [28] Quantile Regression Based on the Weighted Approach with Dependent Truncated Data
    Hsieh, Jin-Jian
    Hsieh, Cheng-Chih
    MATHEMATICS, 2023, 11 (17)
  • [29] Nonparametric censored and truncated regression
    Lewbel, A
    Linton, O
    ECONOMETRICA, 2002, 70 (02) : 765 - 779
  • [30] Assessing quantile prediction with censored quantile regression models
    Li, Ruosha
    Peng, Limin
    BIOMETRICS, 2017, 73 (02) : 517 - 528