Numerical study of runaway current impact on sawtooth oscillations in tokamaks

被引:0
作者
马瑞瑞 [1 ,2 ]
赵忱 [3 ]
周尧 [4 ]
刘畅 [5 ]
机构
[1] Southwestern Institute of Physics
[2] Center for Nonlinear Plasma Science,ENEA CRFrascati
[3] General Atomics
[4] School of Physics and Astronomy, Institute of Natural Sciences, and MOE-LSC, Shanghai Jiao Tong University
[5] Princeton Plasma Physics
关键词
D O I
暂无
中图分类号
TL631.24 [];
学科分类号
摘要
This study investigates the influence of runaway current in runaway plasmas on the dynamics of sawtooth oscillations and resultant loss of runaway electrons(RE) using the 3D magnetohydrodynamic(MHD) code M3D-C1(Jardin et al 2012 J. Comput. Sci. Discovery 6014002). Using an HL-2A-like equilibrium, we confirm that in the linear phase, the impact of REs on resistive internal kink instabilities is consistent with previous research. In the nonlinear phase, as the runaway current fully replaces the plasmas current, we observe a significant suppression of sawtooth oscillations, with the first sawtooth cycle occurring earlier compared to the case without runaway current. Following the first sawtooth collapse, plasma current density,runaway current density, and safety factor(q) flatten within the q = 1 surface, albeit displaying fine structures. Subsequently, the growing high torodial(n) and poloidal(m) mode number modes disrupt the magnetic surfaces, leading to the loss of REs outside the q = 1 surface, while minimally affecting the majority of REs well-confined within it. Thus, in the current model, the physical processes associated with the presence of sawtooth oscillations do not effectively dissipate runaway current, as REs are assumed to be collisionless. In addition, the final profile of runaway current density exhibits increased steepening near the q = 1 surface in contrast to the initial profile, displaying a distinctive corrugated inhomogeneity influenced by the growing fluctuation of the n = 0 component. Finally, detailed convergence tests are conducted to validate the numerical simulations.
引用
收藏
页码:14 / 25
页数:12
相关论文
共 23 条
[1]   磁通量概念辨析——从高考试题中有关磁通量的表述谈起 [J].
朱行建 ;
张天宇 ;
陆建隆 .
物理教学, 2023, 45 (10) :8-12
[2]   Runaway electron mitigation with supersonic molecular beam injection (SMBI) in ADITYA-U tokamak [J].
Banerjee, Santanu ;
Singh, K. ;
Raj, H. ;
Arambhadiya, B. ;
George, Siju ;
Jadeja, K. A. ;
Singh, Amit K. ;
Edappala, Praveenlal ;
Bisai, N. ;
Ghosh, J. ;
Manchanda, R. ;
Chowdhuri, M. B. ;
Tanna, R. L. ;
Raval, Jayesh ;
Nagora, U. C. ;
Paravastu, Y. ;
Raval, D. C. ;
Mishra, K. ;
Chandra, D. ;
Sen, A. .
NUCLEAR FUSION, 2021, 61 (01)
[3]   MARS-F modeling of post-disruption runaway beam loss by magnetohydrodynamic instabilities in DIII-D [J].
Liu, Y. Q. ;
Parks, P. B. ;
Paz-Soldan, C. ;
Kim, C. ;
Lao, L. L. .
NUCLEAR FUSION, 2019, 59 (12)
[4]  
Time-dependent runaway electron simulations: Ampere–Faraday equations implemented in CQL3D.[J].R.W. Harvey;Yu.V. Petrov;Charlson C. Kim;C.B. Forest;L.L. Lao;P.B. Parks.Nuclear Fusion.2019, 10
[5]   Influence of massive material injection on avalanche runaway generation during tokamak disruptions [J].
Hesslow, L. ;
Embreus, O. ;
Vallhagen, O. ;
Fulop, T. .
NUCLEAR FUSION, 2019, 59 (08)
[6]   Physics of runaway electrons in tokamaks [J].
Breizman, Boris N. ;
Aleynikov, Pavel ;
Hollmann, Eric M. ;
Lehnen, Michael .
NUCLEAR FUSION, 2019, 59 (08)
[7]   Generation and transport of runaway electrons during sawteeth crash in the ADITYA tokamak [J].
Raj, Harshita ;
Ghosh, J. ;
Tanna, R. L. ;
Chattopadhyay, P. K. ;
Raju, D. ;
Jha, S. K. ;
Raval, J. ;
Joisa, Y. S. ;
Purohit, S. ;
Atrey, P. K. ;
Saxena, Y. C. ;
Pal, Rabindranath .
NUCLEAR FUSION, 2018, 58 (07)
[8]   First Direct Observation of Runaway-Electron-Driven Whistler Waves in Tokamaks [J].
Spong, D. A. ;
Heidbrink, W. W. ;
Paz-Soldan, C. ;
Du, X. D. ;
Thome, K. E. ;
Van Zeeland, M. A. ;
Collins, C. ;
Lvovskiy, A. ;
Moyer, R. A. ;
Austin, M. E. ;
Brennan, D. P. ;
Liu, C. ;
Jaeger, E. F. ;
Lau, C. .
PHYSICAL REVIEW LETTERS, 2018, 120 (15)
[9]   Spatiotemporal Evolution of Runaway Electron Momentum Distributions in Tokamaks [J].
Paz-Soldan, C. ;
Cooper, C. M. ;
Aleynikov, P. ;
Pace, D. C. ;
Eidietis, N. W. ;
Brennan, D. P. ;
Granetz, R. S. ;
Hollmann, E. M. ;
Liu, C. ;
Lvovskiy, A. ;
Moyer, R. A. ;
Shiraki, D. .
PHYSICAL REVIEW LETTERS, 2017, 118 (25)
[10]   Simulation of runaway electrons, transport affected by J-TEXT resonant magnetic perturbation [J].
Jiang, Z. H. ;
Wang, X. H. ;
Chen, Z. Y. ;
Huang, D. W. ;
Sun, X. F. ;
Xu, T. ;
Zhuang, G. .
NUCLEAR FUSION, 2016, 56 (09)