High Quality Monocular Video Depth Estimation Based on Mask Guided Refinement

被引:0
|
作者
Huixiao Pan
Qiang Zhao
机构
[1] SchoolofAutomation,HangzhouDianziUniversity
关键词
D O I
暂无
中图分类号
TP391.41 [];
学科分类号
080203 ;
摘要
Depth maps play a crucial role in various practical applications such as computer vision,augmented reality, and autonomous driving. How to obtain clear and accurate depth information in video depth estimation is a significant challenge faced in the field of computer vision. However,existing monocular video depth estimation models tend to produce blurred or inaccurate depth information in regions with object edges and low texture. To address this issue, we propose a monocular depth estimation model architecture guided by semantic segmentation masks, which introduces semantic information into the model to correct the ambiguous depth regions. We have evaluated the proposed method, and experimental results show that our method improves the accuracy of edge depth, demonstrating the effectiveness of our approach.
引用
收藏
页码:18 / 27
页数:10
相关论文
共 50 条
  • [21] Semantically guided self-supervised monocular depth estimation
    Lu, Xiao
    Sun, Haoran
    Wang, Xiuling
    Zhang, Zhiguo
    Wang, Haixia
    IET IMAGE PROCESSING, 2022, 16 (05) : 1293 - 1304
  • [22] Rich global feature guided network for monocular depth estimation
    Wu, Bingyuan
    Wang, Yongxiong
    IMAGE AND VISION COMPUTING, 2022, 125
  • [23] Infant Video Interaction Recognition Using Monocular Depth Estimation
    Rasmussen, Christopher
    Kiruga, Amani
    Orlando, Julie
    Lobo, Michele A.
    ADVANCES IN VISUAL COMPUTING, ISVC 2024, PT I, 2025, 15046 : 156 - 169
  • [24] DEEP MONOCULAR VIDEO DEPTH ESTIMATION USING TEMPORAL ATTENTION
    Ren, Haoyu
    El-khamy, Mostafa
    Lee, Jungwon
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 1988 - 1992
  • [25] Realtime depth estimation and obstacle detection from monocular video
    Wedel, Andreas
    Franke, Uwe
    Klappstein, Jens
    Brox, Thomas
    Cremers, Daniel
    PATTERN RECOGNITION, PROCEEDINGS, 2006, 4174 : 475 - 484
  • [26] Online supervised attention-based recurrent depth estimation from monocular video
    Maslov D.
    Makarov I.
    Maslov, Dmitrii (dvmaslov@edu.hse.ru), 1600, PeerJ Inc. (06): : 1 - 22
  • [27] MAMo: Leveraging Memory and Attention for Monocular Video Depth Estimation
    Yasarla, Rajeev
    Cai, Hong
    Jeong, Jisoo
    Shi, Yunxiao
    Garrepalli, Risheek
    Porikli, Fatih
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 8720 - 8730
  • [28] Online supervised attention-based recurrent depth estimation from monocular video
    Maslov, Dmitrii
    Makarov, Ilya
    PEERJ COMPUTER SCIENCE, 2020,
  • [29] ResNet50-based Automated Method for Monocular Depth Estimation using Video
    Kouloorkar, Shradha
    Gurjar, Kuldeep
    Ray, Kamla Prasan
    Sharma, Rishi Raj
    10TH INTERNATIONAL CONFERENCE ON ELECTRONICS, COMPUTING AND COMMUNICATION TECHNOLOGIES, CONECCT 2024, 2024,
  • [30] MDSNet: self-supervised monocular depth estimation for video sequences using self-attention and threshold mask
    Zhao, Jiaqi
    Zhao, Chaoyue
    Liu, Chunling
    Zhang, Chaojian
    Zhang, Wang
    JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (05)