Galois representations over function fields that are ramified at one prime

被引:0
作者
Ray, Anwesh [1 ]
机构
[1] Chennai Math Inst, H1 SIPCOT IT Pk, Siruseri 603103, Tamil Nadu, India
关键词
Galois representations; Drinfeld modules; Function field arithmetic; Ramification of Tate modules; COVERINGS;
D O I
10.1007/s11139-024-01012-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_q$$\end{document} be the finite field with q elements, F:=Fq(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F:=\mathbb {F}_q(T)$$\end{document} and Fsep\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F<^>{\operatorname {sep}}$$\end{document} a separable closure of F. Set A to denote the polynomial ring Fq[T]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_q[T]$$\end{document}. Let p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {p}$$\end{document} be a non-zero prime ideal of A, and O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}$$\end{document} be the completion of A at p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {p}$$\end{document}. Given any integer r >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\ge 2$$\end{document}, I construct a Galois representation rho:Gal(Fsep/F)-> GLr(O)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho :\operatorname {Gal}(F<^>{\operatorname {sep}}/F)\rightarrow \operatorname {GL}_r(\mathcal {O})$$\end{document} which is unramified at all non-zero primes l not equal p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {l}\ne \mathfrak {p}$$\end{document} of A, and whose image is a finite index subgroup of GLr(O)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\operatorname {GL}_r(\mathcal {O})$$\end{document}. Moreover, if the degree of p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {p}$$\end{document} is 1, then rho\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document} is also unramified at infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\infty $$\end{document}.
引用
收藏
页数:13
相关论文
共 14 条
[1]   COVERINGS OF ALGEBRAIC CURVES [J].
ABHYANKAR, S .
AMERICAN JOURNAL OF MATHEMATICS, 1957, 79 (04) :825-856
[2]   Generators of the pro-p Iwahori and Galois representations [J].
Cornut, Christophe ;
Ray, Jishnu .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2018, 14 (01) :37-53
[3]  
Drinfeld Vladimir G., 1974, MATH USSR SB, V94, P656, DOI DOI 10.1070/SM1974V023N04ABEH001731
[4]   Galois representations with open image [J].
Greenberg, Ralph .
ANNALES MATHEMATIQUES DU QUEBEC, 2016, 40 (01) :83-119
[5]   ABHYANKARS CONJECTURE ON GALOIS-GROUPS OVER CURVES [J].
HARBATER, D .
INVENTIONES MATHEMATICAE, 1994, 117 (01) :1-25
[6]   A note on Galois representations with big image [J].
Katz, Nicholas M. .
ENSEIGNEMENT MATHEMATIQUE, 2019, 65 (3-4) :271-301
[7]   ON GALOIS REPRESENTATIONS WITH LARGE IMAGE [J].
Maire, Christian .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 376 (10) :7087-7106
[8]  
Maletto S., 2023, J. Number Theory, V244, P204, DOI [10.1016/j.jnt.2022.09.015, DOI 10.1016/J.JNT.2022.09.015]
[9]  
Papikian M., 2023, Drinfeld Modules. Graduate Texts in Mathematics, V296, P2023
[10]   Adelic openness for Drinfeld modules in generic characteristic [J].
Pink, Richard ;
Ruetsche, Egon .
JOURNAL OF NUMBER THEORY, 2009, 129 (04) :882-907