Preparation process for biomass nanofiber/bisphenol A-type epoxy resin composites with superior mechanical and thermal properties

被引:0
作者
Hatano, Ryo [1 ]
Tominaga, Yuichi [2 ]
Imai, Yusuke [2 ]
Nakano, Kazunori [1 ]
机构
[1] Nagoya Municipal Ind Res Inst, Rokuban 3-4-41,Atsuta Ku, Nagoya 4560058, Japan
[2] Natl Inst Adv Ind Sci & Technol, Sakurazaka 4-205,Moriyama Ku, Nagoya 4638560, Japan
关键词
Preparation process; Biomass nanofiber; Epoxy resin; Composite; Dispersibility; Mechanical property; CELLULOSE NANOFIBER; MICROFIBRILLATED CELLULOSE; SURFACE MODIFICATION; CHITIN NANOFIBERS; ALPHA-CHITIN; DGEBA EPOXY; BISPHENOL-A; NANOCRYSTALS; BIOCOMPOSITES; MEMBRANES;
D O I
10.1007/s10570-025-06455-5
中图分类号
TB3 [工程材料学]; TS [轻工业、手工业、生活服务业];
学科分类号
0805 ; 080502 ; 0822 ;
摘要
A novel preparation process is developed to effectively disperse biomass nanofibers such as cellulose, chitin, and chitosan nanofibers, in a hydrophobic bisphenol-A-type epoxy resin. The nanofibers (NFs) are incorporated into an amphiphilic epoxy resin and then mixed with the diglycidyl ether of bisphenol A. The mechanical properties of the epoxy resin improved by 27-39%. Differences in reinforcement properties based on the NF type are discussed in terms of aspect ratio, dispersibility, and interfacial adhesion with the epoxy matrix. Chitin nanofibers (ChNFs), which have the highest aspect ratio and relatively high hydrophobicity, show the strongest reinforcement because of their dense NF network and superior interfacial adhesion to the epoxy matrix. NF dispersion improved both tensile strength and elongation at break, making the NF/epoxy composites tougher than the neat epoxy resin, while increasing the impact and adhesive strength. The NF network structure has a low coefficient of thermal expansion (CTE) that restricts the molecular motion of epoxy chains, leading to lower CTE and higher glass transition temperatures than that of the neat epoxy resin. A wet-rotating disc milling (WRDM) process further improved NF dispersibility in the matrix, increasing the tensile strength and elongation at break of the WRDM-treated ChNF/epoxy composite by 48 and 71%, respectively, compared to that of the neat resin. This method successfully dispersed biomass NFs in a hydrophobic bisphenol A-type epoxy resin, enhancing its mechanical and thermal properties while addressing drawbacks of the epoxy resin such as brittleness, thermal expansion, and cure shrinkage.
引用
收藏
页码:3189 / 3206
页数:18
相关论文
共 50 条
  • [31] Mechanical and Thermal Properties of Epoxy Resin Modified with Polyurethane
    Bakar, M.
    Duk, R.
    Przybylek, M.
    Kostrzewa, M.
    [J]. JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2009, 28 (17) : 2107 - 2118
  • [32] Mechanical and thermal properties of cellulose nanofiber composites with nanodiamond as nanocarbon filler
    Kato, Takashi
    Matsumoto, Takuya
    Hongo, Chizuru
    Nishino, Takashi
    [J]. NANOCOMPOSITES, 2018, 4 (04) : 127 - 136
  • [33] Influence of the Epoxy Resin Process Parameters on the Mechanical Properties of Produced Bidirectional [±45°] Carbon/Epoxy Woven Composites
    Ramirez-Herrera, Claudia A.
    Cruz-Cruz, Isidro
    Jimenez-Cedeno, Isaac H.
    Martinez-Romero, Oscar
    Elias-Zuniga, Alex
    [J]. POLYMERS, 2021, 13 (08)
  • [34] Preparation and Characterization of Hybrid Materials of Epoxy Resin Type Bisphenol A With Silicon and Titanium Oxides by Sol Gel Process
    Carrillo-Castillo, Amanda
    Osuna-Alarcon, Juan G.
    [J]. JOURNAL OF THE MEXICAN CHEMICAL SOCIETY, 2011, 55 (04) : 233 - 237
  • [35] Study of the epoxy/amine equivalent ratio on thermal properties, cryogenic mechanical properties, and liquid oxygen compatibility of the bisphenol A epoxy resin containing phosphorus
    Wang, Hongyu
    Li, Shichao
    Yuan, Yuhuan
    Liu, Xin
    Sun, Tao
    Wu, Zhanjun
    [J]. HIGH PERFORMANCE POLYMERS, 2020, 32 (04) : 429 - 443
  • [36] Preparation and Properties of Epoxy Resin Composites Incorporated with Optical Fiber Preform Waste
    Shi C.
    Wang J.
    Chen H.
    Yang X.
    Du C.
    Li G.
    Liu P.
    Cai H.
    [J]. Cailiao Yanjiu Xuebao/Chinese Journal of Materials Research, 2020, 34 (01): : 57 - 63
  • [37] Determining the mechanical properties of epoxy resin (DGEBA) composites by ultrasonic velocity measurement
    Oral, Imran
    Guzel, Hatice
    Ahmetli, Gulnare
    [J]. JOURNAL OF APPLIED POLYMER SCIENCE, 2013, 127 (03) : 1667 - 1675
  • [38] Mechanical Properties of Bio-Composites Based on Epoxy Resin and Nanocellulose Fibres
    Roszowska-Jarosz, Martyna
    Masiewicz, Joanna
    Kostrzewa, Marcin
    Kucharczyk, Wojciech
    Zurowski, Wojciech
    Kucinska-Lipka, Justyna
    Przybylek, Pawel
    [J]. MATERIALS, 2021, 14 (13)
  • [39] Mechanical and thermal properties of mesogen-jacketed liquid crystalline polymer/epoxy resin composites
    Chunpeng Chai
    Fangfang Yin
    Guoping Li
    Yunjun Luo
    [J]. Science China Chemistry, 2015, 58 : 1021 - 1026
  • [40] Mechanical and thermal properties of mesogen-jacketed liquid crystalline polymer/epoxy resin composites
    Chai, Chunpeng
    Yin, Fangfang
    Li, Guoping
    Luo, Yunjun
    [J]. SCIENCE CHINA-CHEMISTRY, 2015, 58 (06) : 1021 - 1026