Probing the limits of variational quantum algorithms for nonlinear ground states on real quantum hardware: The effects of noise

被引:1
作者
Umer, Muhammad [1 ]
Mastorakis, Eleftherios [2 ]
Evangelou, Sofia [2 ]
Angelakis, Dimitris G. [1 ,2 ,3 ]
机构
[1] Natl Univ Singapore, Ctr Quantum Technol, 3 Sci Dr 2, Singapore 117543, Singapore
[2] Tech Univ Crete, Sch Elect & Comp Engn, Khania 73100, Greece
[3] AngelQ Quantum Comp, 531A Upper Cross St,04-95 Hong Lim Complex, Singapore 051531, Singapore
基金
新加坡国家研究基金会;
关键词
BOSE-EINSTEIN CONDENSATION; MATRIX PRODUCT STATES; OPTICAL SOLITONS; NETWORKS;
D O I
10.1103/PhysRevA.111.012626
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A recently proposed variational quantum algorithm has expanded the horizon of variational quantum computing to nonlinear physics and fluid dynamics. In this work, we probe the ability of such approach to capture the ground state of the nonlinear Schr & ouml;dinger equation for a range of parameters on real superconducting quantum processors. Specifically, we study the expressivity of real-amplitude, hardware-efficient Ansatz to capture the ground state of this nonlinear system across various interaction regimes and implement different noise scenarios in both simulators and cloud processors. Our investigation reveals that although quantum hardware noise impairs the evaluation of the energy cost function, certain small instances of the problem consistently converge to the ground state. We test and demonstrate a variety of cases on IBM Q superconducting devices and analyze the discrepancies in the energy cost function evaluation due to quantum hardware noise. These discrepancies are absent in the state fidelity estimation because of the shallow state preparation circuit. Our comprehensive analysis offers valuable insights into the practical implementation and advancement of the variational algorithms for nonlinear problems.
引用
收藏
页数:12
相关论文
共 52 条
[1]   Simulations of many-body Fermi systems on a universal quantum computer [J].
Abrams, DS ;
Lloyd, S .
PHYSICAL REVIEW LETTERS, 1997, 79 (13) :2586-2589
[2]  
Agrawal GP, 2000, LECT NOTES PHYS, V542, P195
[3]  
Anis M. D. Sajid, Qiskit: An open-source framework for quantum computing
[4]   Parameterized quantum circuits as machine learning models [J].
Benedetti, Marcello ;
Lloyd, Erika ;
Sack, Stefan ;
Fiorentini, Mattia .
QUANTUM SCIENCE AND TECHNOLOGY, 2019, 4 (04)
[5]   Noisy intermediate-scale quantum algorithms [J].
Bharti, Kishor ;
Cervera-Lierta, Alba ;
Kyaw, Thi Ha ;
Haug, Tobias ;
Alperin-Lea, Sumner ;
Anand, Abhinav ;
Degroote, Matthias ;
Heimonen, Hermanni ;
Kottmann, Jakob S. ;
Menke, Tim ;
Mok, Wai-Keong ;
Sim, Sukin ;
Kwek, Leong-Chuan ;
Aspuru-Guzik, Alan .
REVIEWS OF MODERN PHYSICS, 2022, 94 (01)
[6]   Variational quantum algorithms [J].
Cerezo, M. ;
Arrasmith, Andrew ;
Babbush, Ryan ;
Benjamin, Simon C. ;
Endo, Suguru ;
Fujii, Keisuke ;
McClean, Jarrod R. ;
Mitarai, Kosuke ;
Yuan, Xiao ;
Cincio, Lukasz ;
Coles, Patrick J. .
NATURE REVIEWS PHYSICS, 2021, 3 (09) :625-644
[7]   Matrix product states and projected entangled pair states: Concepts, symmetries, theorems [J].
Cirac, J. Ignacio ;
Perez-Garcia, David ;
Schuch, Norbert ;
Verstraete, Frank .
REVIEWS OF MODERN PHYSICS, 2021, 93 (04)
[8]   Theory of Bose-Einstein condensation in trapped gases [J].
Dalfovo, F ;
Giorgini, S ;
Pitaevskii, LP ;
Stringari, S .
REVIEWS OF MODERN PHYSICS, 1999, 71 (03) :463-512
[9]   NUMERICAL-SOLUTION OF THE NONLINEAR SCHRODINGER-EQUATION FOR SMALL SAMPLES OF TRAPPED NEUTRAL ATOMS [J].
EDWARDS, M ;
BURNETT, K .
PHYSICAL REVIEW A, 1995, 51 (02) :1382-1386
[10]   Practical Quantum Error Mitigation for Near-Future Applications [J].
Endo, Suguru ;
Benjamin, Simon C. ;
Li, Ying .
PHYSICAL REVIEW X, 2018, 8 (03)