Existence of three solutions to a p(z)-Laplacian-Like Robin problem

被引:0
作者
El Ouaarabi M. [1 ]
Moujane N. [2 ]
Melliani S. [2 ]
机构
[1] Fundamental and Applied Mathematics Laboratory, Faculty of Sciences Aïn Chock, Hassan II University, Casablanca
[2] Applied Mathematics and Scientific Computing Laboratory, Faculty of Science and Technics, Sultan Moulay Slimane University, Beni Mellal
关键词
Existence; p(z)-Laplacian-Like operator; Partial differential equations; Ricceri’s variational methods; Robin boundary problem; Weight function;
D O I
10.1007/s11565-024-00509-5
中图分类号
学科分类号
摘要
This paper deals with the existence of solutions for a Robin boundary problem involving the p(z)-Laplacian-Like operator. Using Ricceri’s variational method, we prove the existence result of at least three nontrivial solutions of the considered problem in the framework of double weighted generalized Sobolev space. © The Author(s) under exclusive license to Università degli Studi di Ferrara 2024.
引用
收藏
页码:1375 / 1388
页数:13
相关论文
共 39 条
[1]  
Allalou C., El Ouaarabi M., Melliani S., Existence and uniqueness results for a class of p(x)-Kirchhoff-type problems with convection term and Neumann boundary data, J. Elliptic Parabol Equ, 8, 1, pp. 617-633, (2022)
[2]  
Allaoui M., Robin problems involving the p(x)-Laplacian, Appl. Math. Comp, 332, pp. 457-468, (2018)
[3]  
Allaoui M., El Amrouss A.R., Ourraoui A., Existence and multiplicity of solutions for a Steklov problem involving the p(x)-Laplace operator, Electron. J. Differ. Equ, 2012, 132, pp. 1-12, (2012)
[4]  
Antontsev S.N., Rodrigues J.F., On stationary thermo-rheological viscous flows, Ann. Univ. Ferrara Sez. VII Sci. Mat, 52, pp. 19-36, (2006)
[5]  
Averna D., Bonanno G., A three critical points theorem and its applications to the ordinary Dirichlet problem, (2003)
[6]  
Bonanno G., Livrea R., Multiplicity theorems for the Dirichlet problem involving the p -Laplacian, Nonlinear Anal. Theory Methods Appl, 54, 1, pp. 1-7, (2003)
[7]  
Bonanno G., Candito P., Three solutions to a Neumann problem for elliptic equations involving the p-Laplacian, Arch. Math. (Basel), 80, pp. 424-429, (2003)
[8]  
Chen Y., Levine S., Rao R., Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math, 66, pp. 1383-1406, (2006)
[9]  
Deng S.G., Eigenvalues of the p(x)-Laplacian Steklov problem, J. Math. Anal. Appl, 339, pp. 925-937, (2008)
[10]  
Deng S.G., Positive solutions for Robin problem involving the p(x)-Laplacian, J. Math. Anal. Appl, 360, 2, pp. 548-560, (2009)