On the structure of W-algebras in type A

被引:2
作者
Creutzig, Thomas [1 ]
Fasquel, Justine [2 ]
Linshaw, Andrew R. [3 ]
Nakatsuka, Shigenori [1 ]
机构
[1] FAU Erlangen Nurnberg, Dept Math, Cauerstr 11, D-91058 Erlangen, Germany
[2] Univ Melbourne, Sch Math & Stat, Parkville 3010, Australia
[3] Univ Denver, Dept Math, CM Knudson Hall,2390 S York St, Denver, CO 80210 USA
来源
JAPANESE JOURNAL OF MATHEMATICS | 2025年 / 20卷 / 01期
基金
加拿大自然科学与工程研究理事会;
关键词
affine W-algebras; universal W-algebras; reductions by stage; inverse Hamiltonian reductions; collapsing levels; VERTEX OPERATOR-ALGEBRAS; REPRESENTATION-THEORY; VERLINDE FORMULAS; QUANTUM REDUCTION; FUSION RULES; MODULAR DATA; AFFINE; RATIONALITY; SUBALGEBRAS; CATEGORIES;
D O I
10.1007/s11537-025-2414-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We formulate and prove examples of a conjecture which describes the W-algebras\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{W}-\text{algebras}$$\end{document} in type A as successive quantum Hamiltonian reductions of affine vertex algebras associated with several hook-type nilpotent orbits. This implies that the affine coset subalgebras of hook-type W-algebras\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{W}-\text{algebras}$$\end{document} are building blocks of the W-algebras\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{W}-\text{algebras}$$\end{document} in type A. In the rational case, it turns out that the building blocks for the simple quotients are provided by the minimal series of the regular W-algebras\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{W}-\text{algebras}$$\end{document}. In contrast, they are provided by singlet-type extensions of W-algebras\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{W}-\text{algebras}$$\end{document} at collapsing levels which are irrational. In the latter case, several new sporadic isomorphisms between different W-algebras\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{W}-\text{algebras}$$\end{document} are established.
引用
收藏
页码:1 / 111
页数:111
相关论文
共 125 条
[1]  
Adamovi D., 2021, Lie Groups, Number Theory, and Vertex Algebras, V768, P151, DOI [10.1090/conm/768/15461, DOI 10.1090/CONM/768/15461]
[3]   New Approaches for Studying Conformal Embeddings and Collapsing Levels for W-Algebras [J].
Adamovic, Drazen ;
Frajria, Pierluigi Moeseneder ;
Papi, Paolo .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (22) :19431-19475
[4]   On the semisimplicity of the category KLk for affine Lie superalgebras [J].
Adamovic, Drazen ;
Frajria, Pierluigi Moseneder ;
Papi, Paolo .
ADVANCES IN MATHEMATICS, 2022, 405
[5]  
Adamovic D, 2024, MATH ANN, V389, P281, DOI 10.1007/s00208-023-02634-6
[6]   Classification of irreducible modules for Bershadsky-Polyakov algebra at certain levels [J].
Adamovic, Drazen ;
Kontrec, Ana .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2021, 20 (06)
[7]   A realisation of the Bershadsky-Polyakov algebras and their relaxed modules [J].
Adamovic, Drazen ;
Kawasetsu, Kazuya ;
Ridout, David .
LETTERS IN MATHEMATICAL PHYSICS, 2021, 111 (02)
[8]  
Adamovic D, 2021, COMMUN MATH PHYS, V383, P1207, DOI 10.1007/s00220-021-03950-1
[9]  
Adamovic D, 2019, COMMUN MATH PHYS, V366, P1025, DOI 10.1007/s00220-019-03328-4
[10]   Conformal embeddings of affine vertex algebras in minimal W-algebras I: Structural results [J].
Adamovic, Drazen ;
Kac, Victor G. ;
Frajria, Pierluigi Moeseneder ;
Papi, Paolo ;
Perse, Ozren .
JOURNAL OF ALGEBRA, 2018, 500 :117-152