Scalar tidal response of a rotating BTZ black hole

被引:1
作者
Bhatt, Rajendra Prasad [1 ]
Singha, Chiranjeeb [1 ]
机构
[1] Interuniv Ctr Astron & Astrophys, Pune 411007, India
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2024年 / 11期
关键词
Black Holes; Classical Theories of Gravity; FIELD; MASS;
D O I
10.1007/JHEP11(2024)154
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study the response of a rotating BTZ black hole to the scalar tidal perturbation. We show that the real component of the tidal response function isn't zero, indicating that a rotating BTZ black hole possesses non-zero tidal Love numbers. Additionally, we observe scale-dependent behaviour, known as log-running, in the tidal response function. We also conduct a separate analysis on an extremal rotating BTZ black hole, finding qualitative similarities with its non-extremal counterpart. In addition, we present a procedure to calculate the tidal response function of a charged rotating BTZ black hole as well.
引用
收藏
页数:19
相关论文
共 48 条
  • [1] Abramowitz M., 1972, HDB MATH FUNCTIONS F
  • [2] Arfken G.B., 2005, MATH METHODS PHYS, Vsixth
  • [3] BLACK-HOLE IN 3-DIMENSIONAL SPACETIME
    BANADOS, M
    TEITELBOIM, C
    ZANELLI, J
    [J]. PHYSICAL REVIEW LETTERS, 1992, 69 (13) : 1849 - 1851
  • [4] GEOMETRY OF THE 2+1 BLACK-HOLE
    BANADOS, M
    HENNEAUX, M
    TEITELBOIM, C
    ZANELLI, J
    [J]. PHYSICAL REVIEW D, 1993, 48 (04): : 1506 - 1525
  • [5] Bhatt RP, 2024, Arxiv, DOI arXiv:2406.09543
  • [6] Addressing issues in defining the Love numbers for black holes
    Bhatt, Rajendra Prasad
    Chakraborty, Sumanta
    Bose, Sukanta
    [J]. PHYSICAL REVIEW D, 2023, 108 (08)
  • [7] Relativistic theory of tidal Love numbers
    Binnington, Taylor
    Poisson, Eric
    [J]. PHYSICAL REVIEW D, 2009, 80 (08):
  • [8] Testing strong-field gravity with tidal Love numbers
    Cardoso, Vitor
    Franzin, Edgardo
    Maselli, Andrea
    Pani, Paolo
    Raposo, Guilherme
    [J]. PHYSICAL REVIEW D, 2017, 95 (08)
  • [9] The (2+1)-dimensional black hole
    Carlip, S
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1995, 12 (12) : 2853 - 2879
  • [10] Chakrabarti S, 2013, Arxiv, DOI arXiv:1304.2228