Broadband Squeezed States in Two-Octave Single-Mode Multichannel Waveguide Systems

被引:0
作者
Julius, R. [1 ]
Zulkifpeli, M. Z. K. [1 ]
Ibrahim, A-b. m. a. [2 ]
机构
[1] Univ Teknol MARA UiTM Perak, Fac Appl Sci, Tapah Campus,Tapah Rd, Perak 35400, Malaysia
[2] Univ Teknol MARA UiTM, Fac Appl Sci, Shah Alam 40450, Selangor, Malaysia
关键词
Squeezing; Quantum noise; Harmonic generation; Secondorder-nonlinearity; Multichannel waveguides; Phase space representation; QUANTUM STATES; POSITIVE-P; REPRESENTATION; AMPLIFICATION;
D O I
10.1007/s10773-025-05911-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This study investigates the properties of broadband squeezed states in a two-octave system comprising single-mode nonlinear waveguides with second-order nonlinearity. By examining various input state configurations, the study investigates squeezing features across the first, second, and fourth harmonic generations using semi-analytically phase space representation. In the first octave, all channels exhibit stable squeezing at the fundamental frequency, particularly when initialized in coherent states. The second-octave channels show robust squeezing at the second harmonic, with the central channel demonstrating optimal performance. Higher harmonic frequencies reveal that higher initial states in the first octave amplify squeezing, emphasizing the cumulative effect of nonlinear interactions. These findings highlight the importance of input state configuration and coupling conditions in optimizing squeezing performance and may provide valuable insights for advancements in quantum optics applications.
引用
收藏
页数:16
相关论文
共 37 条
[1]  
Carmichael H., 1999, STAT METHODS QUANTUM, DOI 10.1007/978-3-662-03875-8
[2]   Direct demonstration of spin-squeezing-induced metrological enhancement on state-of-the-art optical atomic clocks [J].
Chen, Jingbiao ;
Yu, Deshui .
SCIENCE BULLETIN, 2024, 69 (10) :1359-1361
[3]   Applicability of Squeezed- and Coherent-State Continuous-Variable Quantum Key Distribution over Satellite Links [J].
Derkach, Ivan ;
Usenko, Vladyslav C. .
ENTROPY, 2021, 23 (01) :1-14
[4]   Squeezing-enhanced quantum key distribution over atmospheric channels [J].
Derkach, Ivan ;
Usenko, Vladyslav C. ;
Filip, Radim .
NEW JOURNAL OF PHYSICS, 2020, 22 (05)
[5]   GENERALIZED P-REPRESENTATIONS IN QUANTUM OPTICS [J].
DRUMMOND, PD ;
GARDINER, CW .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1980, 13 (07) :2353-2368
[6]   Squeezing in Gravitational Wave Detectors [J].
Dwyer, Sheila E. ;
Mansell, Georgia L. ;
McCuller, Lee .
GALAXIES, 2022, 10 (02)
[7]   High-Threshold Fault-Tolerant Quantum Computation with Analog Quantum Error Correction [J].
Fukui, Kosuke ;
Tomita, Akihisa ;
Okamoto, Atsushi ;
Fujii, Keisuke .
PHYSICAL REVIEW X, 2018, 8 (02)
[8]   Squeezing as a resource for time series processing in quantum reservoir computing [J].
Garcia-Beni, Jorge ;
Giorgi, Gian Luca ;
Soriano, Miguel C. ;
Zambrini, Roberta .
OPTICS EXPRESS, 2024, 32 (04) :6733-6747
[9]   Positive P representation: Application and validity [J].
Gilchrist, A ;
Gardiner, CW ;
Drummond, PD .
PHYSICAL REVIEW A, 1997, 55 (04) :3014-3032
[10]   Multistep Two-Copy Distillation of Squeezed States via Two-Photon Subtraction br [J].
Grebien, Stephan ;
Goettsch, Julian ;
Hage, Boris ;
Fiurasek, Jaromir ;
Schnabel, Roman .
PHYSICAL REVIEW LETTERS, 2022, 129 (27)