Hausdorff dimension in quasiregular dynamics

被引:0
作者
Bergweiler, Walter [1 ]
Tsantaris, Athanasios [2 ]
机构
[1] Christian Albrechts Univ Kiel, Math Seminar, Heinrich Hecht Pl 6, D-24098 Kiel, Germany
[2] Univ Helsinki, Dept Math & Stat, POB 68, FIN-00014 Helsinki, Finland
关键词
FAST ESCAPING SET; JULIA SETS; ITERATION;
D O I
10.1007/s11856-024-2664-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that the Hausdorff dimension of the fast escaping set of a quasiregular self-map of & Ropf;3 can take any value in the interval [1, 3]. The Hausdorff dimension of the Julia set of such a map is estimated under some growth condition.
引用
收藏
页码:429 / 465
页数:37
相关论文
共 34 条
[1]  
Baker, 1970, ANN ACADEMIAE SCIENT, VI, P467
[2]  
BAKER IN, 1975, ANN ACAD SCI FENN A, V1, P277
[3]   On semiconjugation of entire functions [J].
Bergweiler, W ;
Hinkkanen, A .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1999, 126 :565-574
[4]  
Bergweiler W, 2009, P AM MATH SOC, V137, P641
[5]   Non-Escaping Points of Zorich Maps [J].
Bergweiler, Walter ;
Ding, Jie .
ISRAEL JOURNAL OF MATHEMATICS, 2021, 243 (01) :27-43
[6]   FOUNDATIONS FOR AN ITERATION THEORY OF ENTIRE QUASIREGULAR MAPS [J].
Bergweiler, Walter ;
Nicks, Daniel A. .
ISRAEL JOURNAL OF MATHEMATICS, 2014, 201 (01) :147-184
[7]   The Julia Set and the Fast Escaping Set of a Quasiregular Mapping [J].
Bergweiler, Walter ;
Fletcher, Alastair ;
Nicks, Daniel A. .
COMPUTATIONAL METHODS AND FUNCTION THEORY, 2014, 14 (2-3) :209-218
[8]   The fast escaping set for quasiregular mappings [J].
Bergweiler, Walter ;
Drasin, David ;
Fletcher, Alastair .
ANALYSIS AND MATHEMATICAL PHYSICS, 2014, 4 (1-2) :83-98
[9]   Escape rate and Hausdorff measure for entire functions [J].
Bergweiler, Walter ;
Peter, Joern .
MATHEMATISCHE ZEITSCHRIFT, 2013, 274 (1-2) :551-572
[10]   Fatou-Julia theory for non-uniformly quasiregular maps [J].
Bergweiler, Walter .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2013, 33 :1-23