Enhanced therapeutic effects of hypoxia-preconditioned mesenchymal stromal cell-derived extracellular vesicles in renal ischemic injury

被引:0
|
作者
Yuan, Fei [1 ]
Liu, Jie [2 ]
Zhong, Liang [1 ]
Liu, Pengtao [1 ]
Li, Ting [3 ]
Yang, Kexin [3 ]
Gao, Wei [3 ]
Zhang, Guangyuan [4 ]
Sun, Jie [1 ]
Zou, Xiangyu [1 ,3 ]
机构
[1] Shanghai Jiao Tong Univ, Shanghai Childrens Med Ctr, Sch Med, Dept Urol, Shanghai 200127, Peoples R China
[2] Shanghai Jiao Tong Univ, Shanghai Childrens Med Ctr, Sch Med, Dept Neurol, Shanghai, Peoples R China
[3] Shandong Second Med Univ, Sch Basic Med Sci, Weifang, Peoples R China
[4] Southeast Univ, Zhongda Hosp, Dept Urol, Nanjing 210009, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Hypoxia pretreated; Mesenchymal stromal cells; Extracellular vesicles; Renal ischemia reperfusion injury; Anti-oxidative stress; STEM-CELLS; BONE-MARROW; PROMOTES;
D O I
10.1186/s13287-025-04166-z
中图分类号
Q813 [细胞工程];
学科分类号
摘要
BackgroundExtracellular vesicles (EVs) secreted by mesenchymal stromal cells (MSCs) have been shown to provide significant protection against renal ischemia-reperfusion injury (IRI). Hypoxia has emerged as a promising strategy to enhance the tissue repair capabilities of MSCs. However, the specific effects of hypoxia on MSCs and MSC-EVs, as well as their therapeutic potential in renal IRI, remain unclear. In this study, we investigated the alterations occurring in MSCs and the production of MSC-EVs following hypoxia pre-treatment, and further explored the key intrinsic mechanisms underlying the therapeutic effects of hypoxic MSC-EVs in the treatment of renal IRI.MethodsHuman umbilical cord MSCs were cultured under normoxic and hypoxic conditions. Proliferation and related pathways were measured, and RNA sequencing was used to detect changes in the transcriptional profile. MSC-EVs from both normoxic and hypoxic conditions were isolated and characterized. In vivo, the localization and therapeutic effects of MSC-EVs were assessed in a rat renal IRI model. Histological examinations were conducted to evaluate the structure, proliferation, and apoptosis of IRI kidney tissue respectively. Renal function was assessed by measuring serum creatinine and blood urea nitrogen levels. In vitro, the therapeutic potential of MSC-EVs were measured in renal tubular epithelial cells injured by antimycin A. Protein sequencing analysis of hypoxic MSC-EVs was performed, and the depletion of Glutathione S-Transferase Omega 1 (GSTO1) in hypoxic MSC-EVs was carried out to verify its key role in alleviating renal injury.ResultsHypoxia alters MSCs transcriptional profile, promotes their proliferation, and increases the production of EVs. Hypoxia-pretreated MSC-EVs demonstrated a superior ability to mitigate renal IRI, enhancing proliferation and reducing apoptosis of renal tubular epithelial cells both in vivo and in vitro. Protein profiling of the EVs revealed an accumulation of numerous anti-oxidative stress proteins, with GSTO1 being particularly prominent. Knockdown of GSTO1 significantly reduced the antioxidant and therapeutic effects on renal IRI of hypoxic MSC-EVs.ConclusionsHypoxia significantly promotes the generation of MSC-EVs and enhances their therapeutic effects on renal IRI. The antioxidant stress effect induced by GSTO1 is identified as one of the most critical underlying mechanisms. Our findings highlight that hypoxia-pretreated MSC-EVs represent a novel and promising therapeutic strategy for renal IRI.
引用
收藏
页数:18
相关论文
共 50 条
  • [11] ! The Therapeutic Potential of Mesenchymal Stem/Stromal Cell-Derived Extracellular Vesicles
    Boerger, V.
    Goergens, A.
    Rohde, E.
    Giebel, B.
    TRANSFUSIONSMEDIZIN, 2015, 5 (03) : 131 - 137
  • [12] Pulsed focused ultrasound enhances the therapeutic effect of mesenchymal stromal cell-derived extracellular vesicles in acute kidney injury
    Ullah, Mujib
    Liu, Daniel D.
    Rai, Sravanthi
    Razavi, Mehdi
    Concepcion, Waldo
    Thakor, Avnesh S.
    STEM CELL RESEARCH & THERAPY, 2020, 11 (01)
  • [13] Biodistribution of mesenchymal stromal cell-derived extracellular vesicles administered during acute lung injury
    Tieu, Alvin
    Stewart, Duncan J.
    Chwastek, Damian
    Lansdell, Casey
    Burger, Dylan
    Lalu, Manoj M.
    STEM CELL RESEARCH & THERAPY, 2023, 14 (01)
  • [14] Mesenchymal Stromal Cell-Derived Extracellular Vesicles Protect the Fetal Brain After Hypoxia-Ischemia
    Ophelders, Daan R. M. G.
    Wolfs, Tim G. A. M.
    Jellema, Reint K.
    Zwanenburg, Alex
    Andriessen, Peter
    Delhaas, Tammo
    Ludwig, Anna-Kristin
    Radtke, Stefan
    Peters, Vera
    Janssen, Leon
    Giebel, Bernd
    Kramer, Boris W.
    STEM CELLS TRANSLATIONAL MEDICINE, 2016, 5 (06) : 754 - 763
  • [15] Mesenchymal Stromal Cell-Derived Extracellular Vesicles for Vasculopathies and Angiogenesis: Therapeutic Applications and Optimization
    Zhu, Ying
    Liao, Zhao-Fu
    Mo, Miao-Hua
    Xiong, Xing-Dong
    BIOMOLECULES, 2023, 13 (07)
  • [16] Therapeutic potential of mesenchymal stem/stromal cell-derived secretome and vesicles for lung injury and disease
    Liu, Airan
    Zhang, Xiwen
    He, Hongli
    Zhou, Li
    Naito, Yoshifumi
    Sugita, Shinji
    Lee, Jae-Woo
    EXPERT OPINION ON BIOLOGICAL THERAPY, 2020, 20 (02) : 125 - 140
  • [17] The Effects of Hypoxia-Preconditioned Dental Stem Cell-Derived Secretome on Tissue Regeneration
    Liu, Yi
    Ren, Ling
    Li, Mengyao
    Zheng, Bowen
    Liu, Yi
    TISSUE ENGINEERING PART B-REVIEWS, 2025, 31 (01) : 44 - 60
  • [18] Mesenchymal Stromal Cell-Derived Extracellular Vesicles in Wound Healing
    Nallakumarasamy, Arulkumar
    Jeyaraman, Madhan
    Maffulli, Nicola
    Jeyaraman, Naveen
    Suresh, Veerasivabalan
    Ravichandran, Srinath
    Gupta, Manu
    Potty, Anish G.
    El-Amin, Saadiq F., III
    Khanna, Manish
    Gupta, Ashim
    LIFE-BASEL, 2022, 12 (11):
  • [19] Mesenchymal stromal cell-derived extracellular vesicles: regenerative and immunomodulatory effects and potential applications in sepsis
    Zheng, Guoping
    Huang, Ruoqiong
    Qiu, Guanguan
    Ge, Menghua
    Wang, Jiangmei
    Shu, Qiang
    Xu, Jianguo
    CELL AND TISSUE RESEARCH, 2018, 374 (01) : 1 - 15
  • [20] Effects of preconditioning with TNFα and IFNγ in angiogenic potential of mesenchymal stromal cell-derived extracellular vesicles
    Cavallero, Sophie
    Dekali, Samir
    Guitard, Nathalie
    Thery, Helene
    Helissey, Carole
    Francois, Sabine
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2023, 11