Well-posedness and decay rates for 3D generalized rotating MHD equations in critical Fourier-Besov-Morrey spaces

被引:0
作者
Yuan, Baoquan [1 ]
Liu, Tiantian [1 ]
机构
[1] Henan Polytech Univ, Sch Math & Informat Sci, Jiaozuo 454000, Henan, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2025年 / 76卷 / 02期
关键词
Generalized rotating MHD equations; Well-posedness; Decay rate; NAVIER-STOKES EQUATIONS; GLOBAL MILD SOLUTION; CORIOLIS-FORCE;
D O I
10.1007/s00033-025-02427-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies the well-posedness and temporal decay estimate of solutions to the 3D generalized rotationalmagnetohydrodynamics equations in critical Fourier-Besov-Morrey spacesF N-p,lambda,q(4+lambda-3p/-2 alpha)(R-3). More precisely, we obtainthe temporal decay rate (1 +t)-(5/4 alpha-1)with1/2<alpha<5/2+lambda-3/2pfor small solutions inF N-p,lambda,q(4+lambda-3/p-2 alpha)(R-3)boolean AND L-2(R-3).
引用
收藏
页数:23
相关论文
共 37 条
[1]   Global Well-posedness of Generalized Magnetohydrodynamics Equations in Variable Exponent Fourier-Besov-Morrey Spaces [J].
Abidin, Muhammad Zainul ;
Chen, Jie Cheng .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2022, 38 (12) :2187-2198
[2]   GLOBAL WELL-POSEDNESS OF THE GENERALIZED ROTATING MAGNETOHYDRODYNAMICS EQUATIONS IN VARIABLE EXPONENT FOURIER-BESOV SPACES [J].
Abidin, Muhammad Zainul ;
Chen, Jiecheng .
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (03) :1177-1190
[3]   Coriolis effect on temporal decay rates of global solutions to the fractional Navier-Stokes equations [J].
Ahn, Jaewook ;
Kim, Junha ;
Lee, Jihoon .
MATHEMATISCHE ANNALEN, 2022, 383 (1-2) :259-289
[4]   Global solutions to 3D incompressible rotational MHD system [J].
Ahn, Jaewook ;
Kim, Junha ;
Lee, Jihoon .
JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (01) :235-246
[5]   Stationary solutions for the fractional Navier-Stokes-Coriolis system in Fourier-Besov spaces [J].
Aurazo-Alvarez, Leithold L. .
JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2023, 9 (01) :441-471
[6]   Well-posedness, analyticity and time decay of the 3D fractional magneto-hydrodynamics equations in critical Fourier-Besov-Morrey spaces with variable exponent [J].
Azanzal, Achraf ;
Allalou, Chakir ;
Melliani, Said .
JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2022, 8 (02) :723-742
[7]   WELL-POSEDNESS AND ANALYTICITY FOR GENERALIZED NAVIER-STOKES EQUATIONS IN CRITICAL FOURIER-BESOV-MORREY SPACES [J].
Azanzal, Achraf ;
Allalou, Chakir ;
Abbassi, Adil .
JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2021, 2021
[8]  
Bahouri H, 2011, GRUNDLEHR MATH WISS, V343, P1, DOI 10.1007/978-3-642-16830-7_1
[9]   Large time behaviour of solutions to the 3D-NSE in Xσ spaces [J].
Benameur, Jamel ;
Bennaceur, Mariem .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 482 (02)
[10]  
BONY JM, 1981, ANN SCI ECOLE NORM S, V14, P209