Broadband metamaterial absorber based on plasmonic nanodisk array and its application in boosting the performance of photodetector

被引:0
作者
Wang, Xuefei [1 ,2 ,3 ]
Lu, Huanyu [3 ,4 ,5 ]
Wang, Bin [3 ,4 ,5 ]
Liu, Mingxiu [3 ,4 ]
Guo, Guangtong [1 ,2 ,3 ]
Ma, Siyao [1 ,2 ,3 ]
Lv, Jinguang [1 ,2 ,3 ]
Liang, Jingqiu [1 ,2 ,3 ]
Wang, Weibiao [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Key Lab Adv Mfg Opt Syst, Changchun 130033, Jilin, Peoples R China
[2] Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, State Key Lab Appl Opt, Changchun 130033, Jilin, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Chinese Acad Sci, Key Lab Luminescence Sci & Technol, Changchun 130033, Jilin, Peoples R China
[5] Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, State Key Lab Luminescence Sci & Applicat, Changchun 130033, Jilin, Peoples R China
基金
中国国家自然科学基金;
关键词
PERFECT ABSORBER; DESIGN; METASURFACE; RESONATORS; ABSORPTION; RESONANCE;
D O I
10.1016/j.optlastec.2025.112581
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this work, we present the design and fabrication of the broadband metamaterial absorber (MA) based on plasmonic nanodisk arrays. The proposed MA structure exhibits a high average absorption of 96.68 % in simulation and 80 % in experiment, which covering the broadband spectrum range from visible to near-infrared (400 to 1000 nm). Furthermore, a plasmonic perovskite photodetector (PD) functionalized by the proposed plasmonic MA structure was fabricated to exploring its potential applications in boosting the performance of PD. The results demonstrate that the plasmonic PD achieves 3.5 times enhancement in the responsivity compared with the normal PD (without plasmonic MA structure). The reported broadband MA structure can be used as a universal plasmonic platform for a wide range of applications including PDs, solar cells and other optoelectronic devices.
引用
收藏
页数:8
相关论文
共 56 条
[1]  
Chiam S.Y., Singh R., Rockstuhl C., Lederer F., Zhang W.L., Bettiol A.A., Analogue of electromagnetically induced transparency in a terahertz metamaterial, Phys. Rev. B, 80, 15, (2009)
[2]  
Yu L.L., Ji F., Guo T., Yan Z.D., Huang Z., Deng J., Tang C.J., Ultraviolet thermally tunable silicon magnetic plasmon induced transparency, Opt. Commun., 575, (2025)
[3]  
Xiong H., Xie J.Y., Liu Y.J., Wang B.X., Xiao D.P., Zhang H.Q., Microwave hyperthermia technology based on near-field focused metasurfaces: design and implementation, Adv. Funct. Mater., 2411842, (2024)
[4]  
Zhao Y.G., Zhang M., Alabastri A., Nordlander P., Fast topology optimization for near-field focusing all-dielectric metasurfaces using the discrete dipole approximation, ACS Nano, 16, 11, pp. 18951-18958, (2022)
[5]  
Valentine J., Zhang S., Zentgraf T., Ulin-Avila E., Genov D.A., Bartal G., Zhang X., Three-dimensional optical metamaterial with a negative refractive index, Nature, 455, 7211, pp. 376-379, (2008)
[6]  
Xiong H., Yang Q., Huang Y.Z., Wang X., Yi Z., Zhang H.Q., A high-efficiency hybrid microwave power receiving metasurface array with dual matching of surface impedance and phase gradient, Appl. Phys. Lett., 125, 4, (2024)
[7]  
Xiong H., Yang Q., Huang Y.Z., Deng J.H., Wang B.X., Zhang H.Q., High-Efficiency Microwave Wireless Power Transmission via Reflective Phase Gradient Metasurfaces and Surface Wave Aggregation, ACS Appl. Mater. Interfaces, 16, 44, pp. 60189-60196, (2024)
[8]  
Yang Q., Xiong H., Deng J.H., Wang B.X., Peng W.X., Zhang H.Q., Polarization-insensitive composite gradient-index metasurface array for microwave power reception, Appl. Phys. Lett., 122, 25, (2023)
[9]  
Landy N.I., Sajuyigbe S., Mock J.J., Smith D.R., Padilla W.J., Perfect Metamaterial Absorber, Phys. Rev. Lett., 100, (2008)
[10]  
Feng L., Huo P.C., Liang Y.Z., Xu T., Photonic Metamaterial Absorbers: Morphology Engineering and Interdisciplinary Applications, Adv. Mater., 32, 27, (2020)