Uncoupling of mTORC1 from E2F activity maintains DNA damage and senescence

被引:0
|
作者
Daigh, Leighton H. [1 ]
Saha, Debarya [2 ]
Rosenthal, David L. [2 ]
Ferrick, Katherine R. [1 ,2 ]
Meyer, Tobias [1 ,2 ]
机构
[1] Stanford Univ, Sch Med, Dept Chem & Syst Biol, Stanford, CA 94305 USA
[2] Weill Cornell Med Coll, Dept Cell & Dev Biol, New York, NY 10065 USA
基金
美国国家卫生研究院;
关键词
ONCOGENE-INDUCED SENESCENCE; CELL-CYCLE PROGRESSION; RIBOSOMAL-RNA GENES; REPLICATION-STRESS; GROWTH; REPAIR; TRANSCRIPTION; P53; ACTIVATION; QUIESCENCE;
D O I
10.1038/s41467-024-52820-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
DNA damage is a primary trigger for cellular senescence, which in turn causes organismal aging and is a promising target of anti-aging therapies. Most DNA damage occurs when DNA is fragile during DNA replication in S phase, but senescent cells maintain DNA damage long-after DNA replication has stopped. How senescent cells induce DNA damage and why senescent cells fail to repair damaged DNA remain open questions. Here, we combine reversible expression of the senescence-inducing CDK4/6 inhibitory protein p16INK4 (p16) with live single-cell analysis and show that sustained mTORC1 signaling triggers senescence in non-proliferating cells by increasing transcriptional DNA damage and inflammation signaling that persists after p16 is degraded. Strikingly, we show that activation of E2F transcriptional program, which is regulated by CDK4/6 activity and promotes expression of DNA repair proteins, repairs transcriptionally damaged DNA without requiring DNA replication. Together, our study suggests that senescence can be maintained by ongoing mTORC1-induced transcriptional DNA damage that cannot be sufficiently repaired without induction of protective E2F target genes. Persistent DNA damage is a hallmark of senescence. Here, the authors show that senescent cells accumulate DNA damage due to transcriptional stress and are unable to repair DNA damage due to the absence of cell-cycle regulated DNA repair programs.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Dual mTORC1/2 inhibition by INK-128 results in antitumor activity in preclinical models of osteosarcoma
    Jiang, Haibin
    Zeng, Zhiyuan
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2015, 468 (1-2) : 255 - 261
  • [32] Modulation of the E2F1-Driven Cancer Cell Fate by the DNA Damage Response Machinery and Potential Novel E2F1 Targets in Osteosarcomas
    Liontos, Michalis
    Niforou, Katerina
    Velimezi, Georgia
    Vougas, Konstantinos
    Evangelou, Konstantinos
    Apostolopoulou, Kalliopi
    Vrtel, Radek
    Damalas, Alexandros
    Kontovazenitis, Panayiotis
    Kotsinas, Athanassios
    Zoumpourlis, Vassilis
    Tsangaris, George Th.
    Kittas, Christos
    Ginsberg, Doron
    Halazonetis, Thanos D.
    Bartek, Jiri
    Gorgoulis, Vassilis G.
    AMERICAN JOURNAL OF PATHOLOGY, 2009, 175 (01) : 376 - 391
  • [33] Transcriptional and Nontranscriptional Functions of E2F1 in Response to DNA Damage
    Biswas, Anup K.
    Johnson, David G.
    CANCER RESEARCH, 2012, 72 (01) : 13 - 17
  • [34] Excessive E2F Transcription in Single Cancer Cells Precludes Transient Cell-Cycle Exit after DNA Damage
    Segeren, Hendrika A.
    van Rijnberk, Lotte M.
    Moreno, Eva
    Riemers, Frank M.
    van Liere, Elsbeth A.
    Yuan, Ruixue
    Wubbolts, Richard
    de Bruin, Alain
    Westendorp, Bart
    CELL REPORTS, 2020, 33 (09):
  • [35] mTORC1 Controls Mitochondrial Activity and Biogenesis through 4E-BP-Dependent Translational Regulation
    Morita, Masahiro
    Gravel, Simon-Pierre
    Chenard, Valerie
    Sikstrom, Kristina
    Zheng, Liang
    Alain, Tommy
    Gandin, Valentina
    Avizonis, Daina
    Arguello, Meztli
    Zakaria, Chadi
    McLaughlan, Shannon
    Nouet, Yann
    Pause, Arnim
    Pollak, Michael
    Gottlieb, Eyal
    Larsson, Ola
    St-Pierre, Julie
    Topisirovic, Ivan
    Sonenberg, Nahum
    CELL METABOLISM, 2013, 18 (05) : 698 - 711
  • [36] Atypical E2F activity coordinates PHR1 photolyase gene transcription with endoreduplication onset
    Radziejwoski, Amandine
    Vlieghe, Kobe
    Lammens, Tim
    Berckmans, Barbara
    Maes, Sara
    Jansen, Marcel A. K.
    Knappe, Claudia
    Albert, Andreas
    Seidlitz, Harald K.
    Bahnweg, Guenther
    Inze, Dirk
    De Veylder, Lieven
    EMBO JOURNAL, 2011, 30 (02) : 355 - 363
  • [37] Increased mTORC1 activity contributes to atherosclerosis in apolipoprotein E knockout mice and in vascular smooth muscle cells
    Ma, Kun Ling
    Liu, Jing
    Wang, Chang Xian
    Ni, Jie
    Zhang, Yang
    Wu, Yu
    Lv, Lin Li
    Ruan, Xiong Zhong
    Liu, Bi Cheng
    INTERNATIONAL JOURNAL OF CARDIOLOGY, 2013, 168 (06) : 5450 - 5453
  • [38] The evaluation of anoxia responsive E2F DNA binding activity in the red eared slider turtle, Trachemys scripta elegans
    Biggar, Kyle K.
    Storey, Kenneth B.
    PEERJ, 2018, 6
  • [39] E2F transcription factor-1 regulates oxidative metabolism
    Blanchet, Emilie
    Annicotte, Jean-Sebastien
    Lagarrigue, Sylviane
    Aguilar, Victor
    Clape, Cyrielle
    Chavey, Carine
    Fritz, Vanessa
    Casas, Francois
    Apparailly, Florence
    Auwerx, Johan
    Fajas, Lluis
    NATURE CELL BIOLOGY, 2011, 13 (09) : 1146 - U184
  • [40] Beyond Rapalog Therapy: Preclinical Pharmacology and Antitumor Activity of WYE-125132, an ATP-Competitive and Specific Inhibitor of mTORC1 and mTORC2
    Yu, Ker
    Shi, Celine
    Toral-Barza, Lourdes
    Lucas, Judy
    Shor, Boris
    Kim, Jae Eun
    Zhang, Wei-Guo
    Mahoney, Robert
    Gaydos, Christine
    Tardio, LuAnna
    Kim, Sung Kyoo
    Conant, Roger
    Curran, Kevin
    Kaplan, Joshua
    Verheijen, Jeroen
    Ayral-Kaloustian, Semiramis
    Mansour, Tarek S.
    Abraham, Robert T.
    Zask, Arie
    Gibbons, James J.
    CANCER RESEARCH, 2010, 70 (02) : 621 - 631