On Weighted Compactness of Commutators of Bilinear Vector-valued Singular Integral Operators and Applications

被引:0
作者
Li, Zhengyang [1 ]
Lu, Liu [1 ]
Liao, Fanghui [2 ]
Xue, Qingying [3 ]
机构
[1] Hunan Univ Sci & Technol, Sch Math & Computat Sci, Xiangtan 411201, Peoples R China
[2] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Peoples R China
[3] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Weighted compactness; commutators; multilinear square functions; Fourier multiplier operator;
D O I
10.1007/s10114-025-3465-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let T be a bilinear vector-valued singular integral operator satisfies some mild regularity conditions, which may not fall under the scope of the theory of standard Calderon-Zygmund classes. For any b(->)=(b(1), b(2))is an element of(CMO(R-n))(2), let [T, b(j)](ej) (j=1, 2), [T, b(->)](alpha) be the commutators in the j-th entry and the iterated commutators of T, respectively. In this paper, for all p(0) > 1, p0/2<p)](alpha) are weighted compact operators from L-p1(w(1))xL(p2)(w(2)) to L-p(nu w(->)), where w(->)=(w(1), w(2))is an element of A(p)(->)/p0 and nu w(->)=w(1)(p/p1)w(2)(p/p2). As applications, we obtain the weighted compactness of commutators in the j-th entry and the iterated commutators of several kinds of bilinear Littlewood-Paley square operators with some mild kernel regularity, including bilinear g function, bilinear g(lambda)* function and bilinear Lusin's area integral. In addition, we also get the weighted compactness of commutators in the j-th entry and the iterated commutators of bilinear Fourier multiplier operators, and bilinear square Fourier multiplier operators associated with bilinear g function, bilinear g(lambda)* function and bilinear Lusin's area integral, respectively.
引用
收藏
页码:169 / 190
页数:22
相关论文
共 24 条
[1]   Compact Bilinear Commutators: The Weighted Case [J].
Benyi, Arpad ;
Damian, Wendolin ;
Moen, Kabe ;
Torres, Rodolfo H. .
MICHIGAN MATHEMATICAL JOURNAL, 2015, 64 (01) :39-51
[2]   Smoothing of Commutators for a Hormander Class of Bilinear Pseudodifferential Operators [J].
Benyi, Arpad ;
Oh, Tadahiro .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2014, 20 (02) :282-300
[3]  
Bényi A, 2013, P AM MATH SOC, V141, P3609
[4]   Weighted norm inequalities for multilinear operators and applications to multilinear Fourier multipliers [J].
Bui, The Anh ;
Duong, Xuan Thinh .
BULLETIN DES SCIENCES MATHEMATIQUES, 2013, 137 (01) :63-75
[5]   A COMPACT EXTENSION OF JOURNE'S T1 THEOREM ON PRODUCT SPACES [J].
Cao, Mingming ;
Yabuta, Kozo ;
Yang, Dachun .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 377 (09) :6251-6309
[6]   A class of multilinear bounded oscillation operators on measure spaces and applications [J].
Cao, Mingming ;
Ibanez-Firnkorn, Gonzalo ;
Rivera-Rios, Israel P. ;
Xue, Qingying ;
Yabuta, Kozo .
MATHEMATISCHE ANNALEN, 2024, 388 (04) :3627-3755
[7]   EXTRAPOLATION FOR MULTILINEAR COMPACT OPERATORS AND APPLICATIONS [J].
Cao, Mingming ;
Olivo, Andrea ;
Yabuta, Kozo .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, :5011-5070
[8]   COMPACTNESS CHARACTERIZATION OF COMMUTATORS FOR LITTLEWOOD-PALEY OPERATORS [J].
Chen, Yanping ;
Ding, Yong .
KODAI MATHEMATICAL JOURNAL, 2009, 32 (02) :256-323
[9]   WEIGHTED ESTIMATES FOR BELTRAMI EQUATIONS [J].
Clop, Albert ;
Cruz, Victor .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2013, 38 (01) :91-113
[10]   FACTORIZATION THEOREMS FOR HARDY SPACES IN SEVERAL VARIABLES [J].
COIFMAN, RR ;
ROCHBERG, R ;
WEISS, G .
ANNALS OF MATHEMATICS, 1976, 103 (03) :611-635