Deep learning models and the limits of explainable artificial intelligence

被引:0
|
作者
Jens Christian Bjerring [1 ]
Jakob Mainz [1 ]
Lauritz Munch [1 ]
机构
[1] Aarhus University,
来源
关键词
AI; Explainable AI; XAI; Opacity; Black box;
D O I
10.1007/s44204-024-00238-8
中图分类号
学科分类号
摘要
It has often been argued that we face a trade-off between accuracy and opacity in deep learning models. The idea is that we can only harness the accuracy of deep learning models by simultaneously accepting that the grounds for the models’ decision-making are epistemically opaque to us. In this paper, we ask the following question: what are the prospects of making deep learning models transparent without compromising on their accuracy? We argue that the answer to this question depends on which kind of opacity we have in mind. If we focus on the standard notion of opacity, which tracks the internal complexities of deep learning models, we argue that existing explainable AI (XAI) techniques show us that the prospects look relatively good. But, as it has recently been argued in the literature, there is another notion of opacity that concerns factors external to the model. We argue that there are at least two types of external opacity—link opacity and structure opacity—and that existing XAI techniques can to some extent help us reduce the former but not the latter.
引用
收藏
相关论文
共 50 条
  • [1] Explainable artificial intelligence for stroke prediction through comparison of deep learning and machine learning models
    Moulaei, Khadijeh
    Afshari, Lida
    Moulaei, Reza
    Sabet, Babak
    Mousavi, Seyed Mohammad
    Afrash, Mohammad Reza
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [2] Explainable Artificial Intelligence for Deep Synthetic Data Generation Models
    Valina, Luis
    Teixeira, Brigida
    Reis, Amalie
    Vale, Zita
    Pinto, Tiago
    2024 IEEE CONFERENCE ON ARTIFICIAL INTELLIGENCE, CAI 2024, 2024, : 555 - 556
  • [3] A Survey on Explainable Artificial Intelligence (XAI) Techniques for Visualizing Deep Learning Models in Medical Imaging
    Bhati, Deepshikha
    Neha, Fnu
    Amiruzzaman, Md
    JOURNAL OF IMAGING, 2024, 10 (10)
  • [4] Explainable artificial intelligence (XAI): How to make image analysis deep learning models transparent
    Song, Haekang
    Kim, Sungho
    2022 22ND INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS 2022), 2022, : 1595 - 1598
  • [5] Application of Deep Learning for Heart Attack Prediction with Explainable Artificial Intelligence
    Dritsas, Elias
    Trigka, Maria
    COMPUTERS, 2024, 13 (10)
  • [6] Explainable Artificial Intelligence for Simulation Models
    Grigoryan, Gayane
    PROCEEDINGS OF THE 38TH ACM SIGSIM INTERNATIONAL CONFERENCE ON PRINCIPLES OF ADVANCED DISCRETE SIMULATION, ACM SIGSIM-PADS 2024, 2024, : 59 - 60
  • [7] Integrated deep learning with explainable artificial intelligence for enhanced landslide management
    Alqadhi, Saeed
    Mallick, Javed
    Alkahtani, Meshel
    NATURAL HAZARDS, 2024, 120 (02) : 1343 - 1365
  • [8] Integrated deep learning with explainable artificial intelligence for enhanced landslide management
    Saeed Alqadhi
    Javed Mallick
    Meshel Alkahtani
    Natural Hazards, 2024, 120 : 1343 - 1365
  • [9] Automated processing of eXplainable Artificial Intelligence outputs in deep learning models for fault diagnostics of large infrastructures
    Floreale, G.
    Baraldi, P.
    Zio, E.
    Fink, O.
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 149
  • [10] Enhancing Early Detection of Diabetic Retinopathy Through the Integration of Deep Learning Models and Explainable Artificial Intelligence
    Alavee, Kazi Ahnaf
    Hasan, Mehedi
    Zillanee, Abu Hasnayen
    Mostakim, Moin
    Uddin, Jia
    Alvarado, Eduardo Silva
    Diez, Isabel de la Torre
    Ashraf, Imran
    Samad, Md Abdus
    IEEE ACCESS, 2024, 12 : 73950 - 73969