VC-Dimension of Hyperplanes Over Finite Fields

被引:0
作者
Ascoli, Ruben [1 ]
Betti, Livia [2 ]
Cheigh, Justin [3 ]
Iosevich, Alex [2 ]
Jeong, Ryan [4 ]
Liu, Xuyan [5 ]
Mcdonald, Brian [6 ]
Milgrim, Wyatt [7 ]
Miller, Steven J. [3 ]
Acosta, Francisco Romero [8 ]
Iannuzzelli, Santiago Velazquez [9 ]
机构
[1] Georgia Inst Technol, Dept Math, Atlanta, GA 30332 USA
[2] Univ Rochester, Dept Math, Rochester, NY USA
[3] Williams Coll, Dept Math, Williamstown, MA USA
[4] Univ Cambridge, Dept Math, Cambridge, England
[5] Brown Univ, Dept Math, Providence, RI USA
[6] Univ Georgia, Dept Math, Athens, GA USA
[7] Univ Calif Los Angeles, Dept Math, Los Angeles, CA USA
[8] Virginia Polytech Inst & State Univ, Dept Math, Blacksburg, VA USA
[9] Northwestern Univ, Dept Math, Evanston, IL USA
基金
美国国家科学基金会;
关键词
VC-dimension; Point configurations; Learning theory; DISTINCT DISTANCES; VECTOR-SPACES;
D O I
10.1007/s00373-025-02909-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Fqd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_q<^>d$$\end{document} be the d-dimensional vector space over the finite field with q elements. For a subset E subset of Fqd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E\subseteq \mathbb {F}_q<^>d$$\end{document} and a fixed nonzero t is an element of Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\in \mathbb {F}_q$$\end{document}, let Ht(E)={hy:y is an element of E}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}_t(E)=\{h_y: y\in E\}$$\end{document}, where hy:E ->{0,1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_y:E\rightarrow \{0,1\}$$\end{document} is the indicator function of the set {x is an element of E:x<middle dot>y=t}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{x\in E: x\cdot y=t\}$$\end{document}. Two of the authors, with Maxwell Sun, showed in the case d=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=3$$\end{document} that if |E|>= Cq114\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|E|\ge Cq<^>{\frac{11}{4}}$$\end{document} and q is sufficiently large, then the VC-dimension of Ht(E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}_t(E)$$\end{document} is 3. In this paper, we generalize the result to arbitrary dimension by showing that the VC-dimension of Ht(E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}_t(E)$$\end{document} is d whenever E subset of Fqd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E\subseteq \mathbb {F}_q<^>d$$\end{document} with |E|>= Cdqd-1d-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|E|\ge C_d q<^>{d-\frac{1}{d-1}}$$\end{document}.
引用
收藏
页数:13
相关论文
共 23 条
[1]   VC-DIMENSION AND DISTANCE CHAINS IN Fdq [J].
Ascoli, Ruben ;
Betti, Livia ;
Cheigh, Justin ;
Iosevich, Alex ;
Jeong, Ryan ;
Liu, Xuyan ;
McDonald, Brian ;
Milgrim, Wyatt ;
Miller, Steven j. ;
Acosta, Francisco romero ;
Iannuzzelli, Santiago velazquez .
KOREAN JOURNAL OF MATHEMATICS, 2024, 32 (01) :43-57
[2]   LONG PATHS IN THE DISTANCE GRAPH OVER LARGE SUBSETS OF VECTOR SPACES OVER FINITE FIELDS [J].
Bennett, Michael ;
Chapman, Jeremy ;
Covert, David ;
Hart, Derrick ;
Iosevich, Alex ;
Pakianathan, Jonathan .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2016, 53 (01) :115-126
[3]  
Brass Peter., 2006, Research Problems in Discrete Geometry
[4]   Distinct distances between a collinear set and an arbitrary set Q crossMark of points [J].
Bruner, Ariel ;
Sharir, Micha .
DISCRETE MATHEMATICS, 2018, 341 (01) :261-265
[5]   Generalized incidence theorems, homogeneous forms and sum-product estimates in finite fields [J].
Covert, David ;
Hart, Derrick ;
Iosevich, Alex ;
Koh, Doowon ;
Rudnev, Misha .
EUROPEAN JOURNAL OF COMBINATORICS, 2010, 31 (01) :306-319
[6]   A combinatorial problem on polynomials and rational functions [J].
Elekes, G ;
Rónyai, L .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2000, 89 (01) :1-20
[7]  
Elekes G., 1999, Period. Math. Hung., V38, P173
[8]  
ERD˝OS P.-NIVEN., 1946, Bull. Amer. Math. Soc, V52, P248, DOI [10.1080/00029890.1946.11991674, DOI 10.1080/00029890.1946.11991674, 10.2307/2305092, DOI 10.2307/2305092]
[9]  
Fitzpatrick D, 2024, DISCRETE COMPUT GEOM, V71, P1167, DOI 10.1007/s00454-023-00570-5
[10]   On the Erdos distinct distances problem in the plane [J].
Guth, Larry ;
Katz, Nets Hawk .
ANNALS OF MATHEMATICS, 2015, 181 (01) :155-190