GAUSSIAN QUANTUM INFORMATION OVER GENERAL QUANTUM KINEMATICAL SYSTEMS I: GAUSSIAN STATES

被引:0
作者
Beny, Cedric [1 ]
Crann, Jason [2 ]
Lee, Hun Hee [3 ,4 ]
Park, Sang-Jun [5 ]
Youn, Sang-Gyun [6 ]
机构
[1] Cortex Discovery GmbH, Regensburg, Germany
[2] Carleton Univ, Sch Math & Stat, Ottawa, ON H1S 5B6, Canada
[3] Seoul Natl Univ, Dept Math Sci, Gwanak Ro 1, Seoul 08826, South Korea
[4] Seoul Natl Univ, Res Inst Math, Gwanak Ro 1, Seoul 08826, South Korea
[5] Univ Toulouse, Lab Phys Theor, CNRS, UPS, Toulouse, France
[6] Seoul Natl Univ, Dept Math Educ & NextQuantum, Gwanak Ro 1, Seoul 08826, South Korea
基金
加拿大自然科学与工程研究理事会; 新加坡国家研究基金会;
关键词
Twisted Fourier transform; Wigner function; pseudo-probability distributions; Gaussian states; Locally compact abelian groups; FIELDS;
D O I
10.1007/s11005-025-01908-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop a theory of Gaussian states over general quantum kinematical systems with finitely many degrees of freedom. The underlying phase space is described by a locally compact abelian (LCA) group G with a symplectic structure determined by a 2-cocycle on G. We use the concept of Gaussian distributions on LCA groups in the sense of Bernstein to define Gaussian states and completely characterize Gaussian states over 2-regular LCA groups of the form G=FxF<^>\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G= F\times \widehat{F}$$\end{document} endowed with a canonical normalized 2-cocycle. This covers, in particular, the case of n-bosonic modes, n-qudit systems with odd d >= 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 3$$\end{document}, and p-adic quantum systems. Our characterization reveals a topological obstruction to Gaussian state entanglement when we decompose the quantum kinematical system into the Euclidean part and the remaining part (whose phase space admits a compact open subgroup). We then generalize the discrete Hudson theorem (Gross in J Math Phys 47(12):122107, 2006) to the case of totally disconnected 2-regular LCA groups. We also examine angle-number systems with phase space TnxZn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {T}<^>n\times \mathbb {Z}<^>n$$\end{document} and fermionic/hard-core bosonic systems with phase space Z22n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}<^>{2n}_2$$\end{document} (which are not 2-regular) and completely characterize their Gaussian states.
引用
收藏
页数:48
相关论文
共 61 条
[1]   Geometric characterization of separability and entanglement in pure Gaussian states by single-mode unitary operations [J].
Adesso, Gerardo ;
Giampaolo, Salvatore M. ;
Illuminati, Fabrizio .
PHYSICAL REVIEW A, 2007, 76 (04)
[2]   Robust Encoding of a Qubit in a Molecule [J].
Albert, Victor V. ;
Covey, Jacob P. ;
Preskill, John .
PHYSICAL REVIEW X, 2020, 10 (03)
[3]  
Armacost D.L., 1981, Monographs and Textbooks in Pure and Applied Mathematics, V68
[4]  
Bernstein SN., 1941, Proc. Leningr. Polytech. Inst, V217, P21
[5]   Tensor network and (p-adic) AdS/CFT [J].
Bhattacharyya, Arpan ;
Hung, Ling-Yan ;
Lei, Yang ;
Li, Wei .
JOURNAL OF HIGH ENERGY PHYSICS, 2018, (01)
[6]   Sharp uncertainty relations for number and angle [J].
Busch, Paul ;
Kiukas, Jukka ;
Werner, R. F. .
JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (04)
[7]   Quantum error correction via codes over GF (4) [J].
Calderbank, AR ;
Rains, EM ;
Shor, PW ;
Sloane, NJA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (04) :1369-1387
[8]   OPTIMAL HYPERCONTRACTIVITY FOR FERMI FIELDS AND RELATED NONCOMMUTATIVE INTEGRATION INEQUALITIES [J].
CARLEN, EA ;
LIEB, EH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 155 (01) :27-46
[9]  
Deitmar A., 2014, Principles of Harmonic Analysis Universitext, V2
[10]   Models for the irreducible representation of a Heisenberg group [J].
Digernes, T ;
Varadarajan, VS .
INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2004, 7 (04) :527-546