GAUSSIAN QUANTUM INFORMATION OVER GENERAL QUANTUM KINEMATICAL SYSTEMS I: GAUSSIAN STATES

被引:0
作者
Beny, Cedric [1 ]
Crann, Jason [2 ]
Lee, Hun Hee [3 ,4 ]
Park, Sang-Jun [5 ]
Youn, Sang-Gyun [6 ]
机构
[1] Cortex Discovery GmbH, Regensburg, Germany
[2] Carleton Univ, Sch Math & Stat, Ottawa, ON H1S 5B6, Canada
[3] Seoul Natl Univ, Dept Math Sci, Gwanak Ro 1, Seoul 08826, South Korea
[4] Seoul Natl Univ, Res Inst Math, Gwanak Ro 1, Seoul 08826, South Korea
[5] Univ Toulouse, Lab Phys Theor, CNRS, UPS, Toulouse, France
[6] Seoul Natl Univ, Dept Math Educ & NextQuantum, Gwanak Ro 1, Seoul 08826, South Korea
基金
新加坡国家研究基金会; 加拿大自然科学与工程研究理事会;
关键词
Twisted Fourier transform; Wigner function; pseudo-probability distributions; Gaussian states; Locally compact abelian groups; FIELDS;
D O I
10.1007/s11005-025-01908-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop a theory of Gaussian states over general quantum kinematical systems with finitely many degrees of freedom. The underlying phase space is described by a locally compact abelian (LCA) group G with a symplectic structure determined by a 2-cocycle on G. We use the concept of Gaussian distributions on LCA groups in the sense of Bernstein to define Gaussian states and completely characterize Gaussian states over 2-regular LCA groups of the form G=FxF<^>\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G= F\times \widehat{F}$$\end{document} endowed with a canonical normalized 2-cocycle. This covers, in particular, the case of n-bosonic modes, n-qudit systems with odd d >= 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 3$$\end{document}, and p-adic quantum systems. Our characterization reveals a topological obstruction to Gaussian state entanglement when we decompose the quantum kinematical system into the Euclidean part and the remaining part (whose phase space admits a compact open subgroup). We then generalize the discrete Hudson theorem (Gross in J Math Phys 47(12):122107, 2006) to the case of totally disconnected 2-regular LCA groups. We also examine angle-number systems with phase space TnxZn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {T}<^>n\times \mathbb {Z}<^>n$$\end{document} and fermionic/hard-core bosonic systems with phase space Z22n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}<^>{2n}_2$$\end{document} (which are not 2-regular) and completely characterize their Gaussian states.
引用
收藏
页数:48
相关论文
共 61 条
  • [1] Geometric characterization of separability and entanglement in pure Gaussian states by single-mode unitary operations
    Adesso, Gerardo
    Giampaolo, Salvatore M.
    Illuminati, Fabrizio
    [J]. PHYSICAL REVIEW A, 2007, 76 (04):
  • [2] Robust Encoding of a Qubit in a Molecule
    Albert, Victor V.
    Covey, Jacob P.
    Preskill, John
    [J]. PHYSICAL REVIEW X, 2020, 10 (03)
  • [3] Armacost D.L., 1981, Monographs Textbooks Pure Appl. Math., V68
  • [4] Bernstein SN., 1941, Proc. Leningr. Polytech. Inst, V217, P21
  • [5] Tensor network and (p-adic) AdS/CFT
    Bhattacharyya, Arpan
    Hung, Ling-Yan
    Lei, Yang
    Li, Wei
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2018, (01):
  • [6] Sharp uncertainty relations for number and angle
    Busch, Paul
    Kiukas, Jukka
    Werner, R. F.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (04)
  • [7] Quantum error correction via codes over GF (4)
    Calderbank, AR
    Rains, EM
    Shor, PW
    Sloane, NJA
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (04) : 1369 - 1387
  • [8] OPTIMAL HYPERCONTRACTIVITY FOR FERMI FIELDS AND RELATED NONCOMMUTATIVE INTEGRATION INEQUALITIES
    CARLEN, EA
    LIEB, EH
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 155 (01) : 27 - 46
  • [9] Deitmar A, 2014, UNIVERSITEXT, P1, DOI 10.1007/978-3-319-05792-7
  • [10] Models for the irreducible representation of a Heisenberg group
    Digernes, T
    Varadarajan, VS
    [J]. INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2004, 7 (04) : 527 - 546