Weyl fermion creation by cosmological gravitational wave background at 1-loop

被引:2
|
作者
Maleknejad, Azadeh [1 ]
Kopp, Joachim [2 ,3 ,4 ]
机构
[1] Kings Coll London, Dept Phys, London WC2R 2LS, England
[2] Theoret Phys Dept, CERN, CH-1211 Geneva 23, Switzerland
[3] Johannes Gutenberg Univ Mainz, PRISMA Cluster Excellence, Staudingerweg 7, D-55099 Mainz, Germany
[4] Johannes Gutenberg Univ Mainz, Mainz Inst Theoret Phys, Staudingerweg 7, D-55099 Mainz, Germany
来源
关键词
Cosmological models; Cosmology of Theories BSM; Early Universe Particle Physics;
D O I
10.1007/JHEP01(2025)023
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Weyl fermions of spin 12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{1}{2} $$\end{document} minimally coupled to Einstein's gravity in 4 dimensions cannot be produced purely gravitationally in an expanding Universe at tree level. Surprisingly, as we showed in a recent letter [1], this changes at gravitational 1-loop when cosmic perturbations, like a gravitational wave background, are present. Such a background introduces a new scale, thereby breaking the fermions' conformal invariance. This leads to a non-vanishing gravitational self-energy for Weyl fermions at 1-loop and induces their production. In this paper, we present an extended study of this new mechanism, explicitly computing this effect using the in-in formalism. We work in an expanding Universe in the radiation-dominated era as a fixed background. Gravitational wave-induced fermion production has rich phenomenological consequences. Notably, if Weyl fermions eventually acquire mass, and assuming realistic - and potentially detectable - gravitational wave backgrounds, the mechanism can explain the abundance of dark matter in the Universe. More generally, gravitational-wave induced freeze-in is a new purely gravitational mechanism for generating other feebly interacting fermions, e.g. right-handed neutrinos. We show that this loop level effect can dominate over the conventional - tree-level - gravitational production of superheavy fermions in a sizable part of the parameter space (https://github.com/koppj/GW-freeze-in/).
引用
收藏
页数:35
相关论文
共 50 条
  • [1] Gravitational fermion creation during an anisotropic phase of cosmological expansion
    Bhoonah, Amit
    PHYSICAL REVIEW D, 2019, 99 (10)
  • [2] Particle creation in a linear gravitational wave background
    Chakraborty, Tanmoy
    Majumdar, Parthasarathi
    PHYSICAL REVIEW D, 2024, 110 (02)
  • [3] Inflationary initial conditions for the cosmological gravitational wave background
    Dall'Armi, Lorenzo Valbusa
    Mierna, Alina
    Matarrese, Sabino
    Ricciardone, Angelo
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2024, (07):
  • [4] GRAVITATIONAL-WAVE BACKGROUND IN MULTIDIMENSIONAL COSMOLOGICAL MODELS
    DEMIANSKI, M
    POLNAREV, AG
    NASELSKY, P
    PHYSICAL REVIEW D, 1993, 47 (12) : 5275 - 5279
  • [5] Direct searches for a cosmological stochastic gravitational wave background
    Lazzarini, A
    Particles, Strings, and Cosmology, 2005, 805 : 87 - 93
  • [6] The gravitational wave background from cosmological compact binaries
    Farmer, AJ
    Phinney, ES
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2003, 346 (04) : 1197 - 1214
  • [7] Imprints of cosmic strings on the cosmological gravitational wave background
    Kleidis, K.
    Papadopoulos, D. B.
    Verdaguer, E.
    Vlahos, L.
    PHYSICAL REVIEW D, 2008, 78 (02):
  • [8] ASYMPTOTIC BEHAVIORS OF 1-LOOP VERTICES IN THE GRAVITATIONAL EFFECTIVE ACTION
    BARVINSKY, AO
    GUSEV, YV
    ZHYTNIKOV, VV
    VILKOVISKY, GA
    CLASSICAL AND QUANTUM GRAVITY, 1995, 12 (09) : 2157 - 2172
  • [9] Anisotropies and non-Gaussianity of the cosmological gravitational wave background
    Bartolo, N.
    Bertacca, D.
    Matarrese, S.
    Peloso, M.
    Ricciardone, A.
    Riotto, A.
    Tasinato, G.
    PHYSICAL REVIEW D, 2019, 100 (12)
  • [10] Gravitational wave stochastic background from cosmological particle decay
    Allen, Bruce
    PHYSICAL REVIEW RESEARCH, 2020, 2 (01):