On Non-visibility of Kobayashi Geodesics and the Geometry of the Boundary

被引:0
作者
Okten, Ahmed Yekta [1 ,2 ]
机构
[1] Inst Math Toulouse, F-31062 Toulouse 9, France
[2] Univ Toulouse, UMR5219, CNRS, UPS, F-31062 Toulouse 9, France
关键词
Kobayashi distance; Kobayashi-Royden pseudometric; (almost) geodesics; Visibility; Goldilocks domains; DOMAINS;
D O I
10.1007/s12220-024-01804-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that on convex domains with C1,alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {C}<^>{1,\alpha }$$\end{document}-smooth boundary the limit set of non-visible Kobayashi geodesics are contained in a complex face. In C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}<^>2$$\end{document} this implies the existence of a complex tangential line segment of non-Goldilocks point in the boundary. Conversely, we construct sequences of non-visible almost-geodesics on (C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}$$\end{document}-)convex domains whose boundary contains a complex tangential line segment of non-Goldilocks points in a specific direction.
引用
收藏
页数:22
相关论文
共 19 条
  • [1] UNBOUNDED VISIBILITY DOMAINS, THE END COMPACTIFICATION, AND APPLICATIONS
    Bharali, Gautam
    Zimmer, Andrew
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 376 (08) : 5949 - 5988
  • [2] Goldilocks domains, a weak notion of visibility, and applications
    Bharali, Gautam
    Zimmer, Andrew
    [J]. ADVANCES IN MATHEMATICS, 2017, 310 : 377 - 425
  • [3] The Bergman metric and the pluricomplex Green function
    Blocki, Z
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (07) : 2613 - 2625
  • [4] Abstract Boundaries and Continuous Extension of Biholomorphisms
    Bracci, F.
    Gaussier, H.
    [J]. ANALYSIS MATHEMATICA, 2022, 48 (02) : 393 - 409
  • [5] Bracci F, 2023, Arxiv, DOI arXiv:2304.11025
  • [6] Visibility of Kobayashi geodesics in convex domains and related properties
    Bracci, Filippo
    Nikolov, Nikolai
    Thomas, Pascal J.
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2022, 301 (02) : 2011 - 2035
  • [7] Bracci F, 2021, MATH ANN, V379, P691, DOI 10.1007/s00208-020-01954-1
  • [8] Bridson M.R., 1999, GRUNDLEHREN MATH WIS, V319
  • [9] Notions of visibility with respect to the Kobayashi distance: comparison and applications
    Chandel, Vikramjeet Singh
    Maitra, Anwoy
    Sarkar, Amar Deep
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2024, 203 (02) : 475 - 498
  • [10] Jarnicki M., 2013, de Gruyter Expo. Math., V9