Electrochemical formation of bis(fluorosulfonyl)imide-derived solid-electrolyte interphase at Li-metal potential

被引:35
作者
Yu, Weilai [1 ]
Lin, Kuan-Yu [1 ]
Boyle, David T. [2 ,3 ]
Tang, Michael T. [1 ,4 ]
Cui, Yi [3 ,8 ,9 ]
Chen, Yuelang [1 ,2 ]
Yu, Zhiao [1 ,2 ]
Xu, Rong [3 ]
Lin, Yangju [1 ]
Feng, Guangxia [3 ]
Huang, Zhuojun [1 ,3 ]
Michalek, Lukas [1 ]
Li, Weiyu [3 ,5 ]
Harris, Stephen J. [6 ]
Jiang, Jyh-Chiang [7 ]
Abild-Pedersen, Frank [4 ]
Qin, Jian [1 ]
Cui, Yi [3 ,8 ,9 ]
Bao, Zhenan [1 ]
机构
[1] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Chem, Stanford, CA USA
[3] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[4] SLAC Natl Accelerator Lab, SUNCAT Ctr Interface Sci & Catalysis, Menlo Pk, CA USA
[5] Univ Wisconsin Madison, Dept Mech Engn, Madison, WI USA
[6] Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Berkeley, CA USA
[7] Natl Taiwan Univ Sci & Technol, Dept Chem Engn, Computat Chem Lab, Taipei, Taiwan
[8] Stanford Univ, Dept Energy Sci & Engn, Stanford, CA 94305 USA
[9] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA
基金
美国国家科学基金会;
关键词
LITHIUM; ENERGY; INTERFACES; EFFICIENCY; FILMS; SEI;
D O I
10.1038/s41557-024-01689-5
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lithium bis(fluorosulfonyl)imide-based liquid electrolytes are promising for realizing high coulombic efficiency and long cycle life in next-generation Li-metal batteries. However, the role of anions in the formation of the solid-electrolyte interphase remains unclear. Here we combine electrochemical analyses and X-ray photoelectron spectroscopy measurements, both with and without sample washing, together with computational simulations, to propose the reaction pathways of electrolyte decomposition and correlate the interphase component solubility with the efficacy of passivation. We discover that not all the products derived from interphase-forming reactions are incorporated into the resulting passivation layer, with a notable portion present in the liquid electrolyte. We also find that the high-performance electrolytes can afford a sufficiently passivating interphase with minimized electrolyte decomposition, by incorporating more anion-decomposition products. Overall, this work presents a systematic approach of coupling electrochemical and surface analyses to paint a comprehensive picture of solid-electrolyte interphase formation, while identifying the key attributes of high-performance electrolytes to guide future designs. Li-metal batteries often utilize liquid electrolytes that yield a solid-electrolyte interphase on electrodes; however, the role of anions in interphase formation remains unclear. Now it has been shown that anion-decomposition products provide varying contributions to interphase formation and that high-performance electrolytes balance effective interfacial passivation with minimized degradation.
引用
收藏
页码:246 / 255
页数:12
相关论文
共 56 条
[1]   Accurate Determination of Coulombic Efficiency for Lithium Metal Anodes and Lithium Metal Batteries [J].
Adams, Brian D. ;
Zheng, Jianming ;
Ren, Xiaodi ;
Xu, Wu ;
Zhang, Ji-Guang .
ADVANCED ENERGY MATERIALS, 2018, 8 (07)
[2]   Polysulfide-containing Glyme-based Electrolytes for Lithium Sulfur Battery [J].
Agostini, Marco ;
Xiong, Shizhao ;
Matic, Aleksandar ;
Hassoun, Jusef .
CHEMISTRY OF MATERIALS, 2015, 27 (13) :4604-4611
[3]   THE ELECTROCHEMISTRY OF NOBLE-METAL ELECTRODES IN APROTIC ORGANIC-SOLVENTS CONTAINING LITHIUM-SALTS [J].
AURBACH, D ;
DAROUX, M ;
FAGUY, P ;
YEAGER, E .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1991, 297 (01) :225-244
[4]   Design of electrolyte solutions for Li and Li-ion batteries: a review [J].
Aurbach, D ;
Talyosef, Y ;
Markovsky, B ;
Markevich, E ;
Zinigrad, E ;
Asraf, L ;
Gnanaraj, JS ;
Kim, HJ .
ELECTROCHIMICA ACTA, 2004, 50 (2-3) :247-254
[5]   IDENTIFICATION OF SURFACE-FILMS FORMED ON LITHIUM IN DIMETHOXYETHANE AND TETRAHYDROFURAN SOLUTIONS [J].
AURBACH, D ;
DAROUX, ML ;
FAGUY, PW ;
YEAGER, E .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1988, 135 (08) :1863-1871
[6]   SPECTROSCOPIC STUDIES OF LITHIUM IN AN ULTRAHIGH-VACUUM SYSTEM [J].
AURBACH, D ;
DAROUX, M ;
MCDOUGALL, G ;
YEAGER, EB .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1993, 358 (1-2) :63-76
[7]   IMPROVED TETRAHEDRON METHOD FOR BRILLOUIN-ZONE INTEGRATIONS [J].
BLOCHL, PE ;
JEPSEN, O ;
ANDERSEN, OK .
PHYSICAL REVIEW B, 1994, 49 (23) :16223-16233
[8]   Transient Voltammetry with Ultramicroelectrodes Reveals the Electron Transfer Kinetics of Lithium Metal Anodes [J].
Boyle, David T. ;
Kong, Xian ;
Pei, Allen ;
Rudnicki, Paul E. ;
Shi, Feifei ;
Huang, William ;
Bao, Zhenan ;
Qin, Jian ;
Cui, Yi .
ACS ENERGY LETTERS, 2020, 5 (03) :701-709
[9]   Monolithic solid-electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization [J].
Cao, Xia ;
Ren, Xiaodi ;
Zou, Lianfeng ;
Engelhard, Mark H. ;
Huang, William ;
Wang, Hansen ;
Matthews, Bethany E. ;
Lee, Hongkyung ;
Niu, Chaojiang ;
Arey, Bruce W. ;
Cui, Yi ;
Wang, Chongmin ;
Xiao, Jie ;
Liu, Jun ;
Xu, Wu ;
Zhang, Ji-Guang .
NATURE ENERGY, 2019, 4 (09) :796-805
[10]   Steric Effect Tuned Ion Solvation Enabling Stable Cycling of High-Voltage Lithium Metal Battery [J].
Chen, Yuelang ;
Yu, Zhiao ;
Rudnicki, Paul ;
Gong, Huaxin ;
Huang, Zhuojun ;
Kim, Sang Cheol ;
Lai, Jian-Cheng ;
Kong, Xian ;
Qin, Jian ;
Cui, Yi ;
Bao, Zhenan .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (44) :18703-18713