An evolutionary prediction model for enterprise basic research based on knowledge graph

被引:0
作者
Diao, Haican [1 ,2 ]
Zhang, Yanqun [1 ,2 ]
Chen, Xu [3 ,4 ]
机构
[1] Chinese Acad Social Sci, Inst Quantitat & Technol Econ, Beijing 100732, Peoples R China
[2] Chinese Acad Social Sci, Lab Econ Big Data & Policy Evaluat, Beijing 100732, Peoples R China
[3] BGRIMM Technol Grp, Beijing 100160, Peoples R China
[4] State Key Lab Sci & Technol Mineral Proc, Beijing 102628, Peoples R China
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
基金
中国国家自然科学基金;
关键词
Enterprise basic research; Knowledge graph; Attention mechanism; Evolutionary prediction models;
D O I
10.1038/s41598-025-89494-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Currently, China's enterprise basic research faces problems due to a need for more systematic guidance and dispersed themes. The construction of an enterprise basic research knowledge graph is of great practical significance for tracking the frontier technology of enterprises and playing the leading role of enterprise innovation. By constructing enterprise basic research dataset and mining the intrinsic correlation between data, the paper proposes a multilayer CNN-BiLSTM-based enterprise basic research evolutionary prediction model, and inference complements the enterprise basic research knowledge graph. At the same time, the paper constructs a probabilistic computational model of enterprise basic research with multi-attention mechanism, and computationally obtains the future hotspots of enterprise basic research. The experimental results show that compared with the existing classical models, the KG-CNN-BiLSTM evolutionary prediction model constructed in this paper has significant improvement in indicators such as AUC and F1 value, and excellent prediction accuracy. This study can more accurately capture several types of cutting-edge research topics within the field of basic research, and provides algorithmic guidance for related scholars to predict the development trend in the field of basic research.
引用
收藏
页数:17
相关论文
共 41 条
[1]  
Aghion P., 2021, The Power of Creative Destruction: Economic Upheaval and the Wealth of Nations, V1th ed, DOI 10.4159/9780674258686
[2]   Relphormer: Relational Graph Transformer for Knowledge Graph Representations [J].
Bi, Zhen ;
Cheng, Siyuan ;
Chen, Jing ;
Liang, Xiaozhuan ;
Xiong, Feiyu ;
Zhang, Ningyu .
NEUROCOMPUTING, 2024, 566
[3]   A tutorial on Support Vector Machines for pattern recognition [J].
Burges, CJC .
DATA MINING AND KNOWLEDGE DISCOVERY, 1998, 2 (02) :121-167
[4]  
[陈杰 Chen Jie], 2021, [数据分析与知识发现, Data Analysis and Knowledge Discovery], V5, P21
[5]  
Chen W. J., 2024, J. Mod. Inf.
[6]  
Chen Y., 2015, Stud. Sci. Sci, V33, P2
[7]  
[代冰 Dai Bing], 2021, [数据分析与知识发现, Data Analysis and Knowledge Discovery], V5, P1
[8]  
Gul H, 2024, Arxiv, DOI [arXiv:2412.11016, 10.48550/arXiv.2412.11016, DOI 10.48550/ARXIV.2412.11016]
[9]   Distributed representations of entities in open-world knowledge graphs [J].
Guo, Lingbing ;
Chen, Zhuo ;
Chen, Jiaoyan ;
Zhang, Yichi ;
Sun, Zequn ;
Bo, Zhongpu ;
Fang, Yin ;
Liu, Xiaoze ;
Chen, Huajun ;
Zhang, Wen .
KNOWLEDGE-BASED SYSTEMS, 2024, 290
[10]   Knowledge Graphs [J].
Hogan, Aidan ;
Blomqvist, Eva ;
Cochez, Michael ;
D'Amato, Claudia ;
de Melo, Gerard ;
Gutierrez, Claudio ;
Kirrane, Sabrina ;
Labra Gayo, Jose Emilio ;
Navigli, Roberto ;
Neumaier, Sebastian ;
Ngomo, Axel-Cyrille Ngonga ;
Polleres, Axel ;
Rashid, Sabbir M. ;
Rula, Anisa ;
Schmelzeisen, Lukas ;
Sequeda, Juan ;
Staab, Steffen ;
Zimmermann, Antoine .
ACM COMPUTING SURVEYS, 2021, 54 (04)