About Modifications of the Loss Function for the Causal Training of Physics-Informed Neural Networks

被引:0
|
作者
V. A. Es’kin [1 ]
D. V. Davydov [2 ]
E. D. Egorova [3 ]
A. O. Malkhanov [2 ]
M. A. Akhukov [4 ]
M. E. Smorkalov [5 ]
机构
[1] Department of Radiophysics,
[2] University of Nizhny Novgorod,undefined
[3] Manpower IT Solutions,undefined
[4] Mechanical Engineering Research Institute Russian Academy of Sciences,undefined
[5] Institute of Applied Physics Russian Academy of Sciences,undefined
[6] Huawei Nizhny Novgorod Research Center,undefined
[7] Skolkovo Institute of Science and Technology,undefined
关键词
deep learning; physics-informed neural networks; partial differential equations; predictive modeling; computational physics; nonlinear dynamics;
D O I
10.1134/S106456242460194X
中图分类号
学科分类号
摘要
引用
收藏
页码:S172 / S192
相关论文
共 50 条
  • [1] SOBOLEV TRAINING FOR PHYSICS-INFORMED NEURAL NETWORKS
    Son, Hwijae
    Jang, Jin woo
    Han, Woo jin
    Hwang, Hyung ju
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2023, 21 (06) : 1679 - 1705
  • [2] Loss-attentional physics-informed neural networks
    Song, Yanjie
    Wang, He
    Yang, He
    Taccari, Maria Luisa
    Chen, Xiaohui
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 501
  • [3] Temporal consistency loss for physics-informed neural networks
    Thakur, Sukirt
    Raissi, Maziar
    Mitra, Harsa
    Ardekani, Arezoo M.
    PHYSICS OF FLUIDS, 2024, 36 (07)
  • [4] Respecting causality for training physics-informed neural networks
    Wang, Sifan
    Sankaran, Shyam
    Perdikaris, Paris
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 421
  • [5] Is L2 Physics-Informed Loss Always Suitable for Training Physics-Informed Neural Network?
    Wang, Chuwei
    Li, Shanda
    He, Di
    Wang, Liwei
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [6] Physics-informed neural networks based cascade loss model
    Feng Y.
    Song X.
    Yuan W.
    Lu H.
    Hangkong Dongli Xuebao/Journal of Aerospace Power, 2023, 38 (07): : 845 - 855
  • [7] Improved Training of Physics-Informed Neural Networks with Model Ensembles
    Haitsiukevich, Katsiaryna
    Ilin, Alexander
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [8] Enforcing Dirichlet boundary conditions in physics-informed neural networks and variational physics-informed neural networks
    Berrone, S.
    Canuto, C.
    Pintore, M.
    Sukumar, N.
    HELIYON, 2023, 9 (08)
  • [9] Quantum Physics-Informed Neural Networks
    Trahan, Corey
    Loveland, Mark
    Dent, Samuel
    ENTROPY, 2024, 26 (08)
  • [10] Separable Physics-Informed Neural Networks
    Cho, Junwoo
    Nam, Seungtae
    Yang, Hyunmo
    Yun, Seok-Bae
    Hong, Youngjoon
    Park, Eunbyung
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,