High Performance of Electrospun Poly(Vinylidene Fluoride-co-Hexafluoropropylene)/Reduced Graphene Oxide Polyelectrolytes for Lithium-Ion Batteries

被引:0
|
作者
Parveen, J. Shahitha [1 ]
Ali, S. A. Muhammed [2 ]
Banu, R. Daulath [1 ]
Thirumurugan, M. [3 ]
机构
[1] BS Abdur Rahman Crescent Inst Sci & Technol, Dept Polymer Engn, Chennai, India
[2] Univ Kebangsaan Malaysia, Fuel Cell Inst, Bangi 43600, Selangor, Malaysia
[3] BS Abdur Rahman Crescent Inst Sci & Technol, Dept Mech Engn, Chennai, India
关键词
Polyvinylidene fluoride-co-hexafluoropropylene (PVdF-HFP); electrospinning; nanofibers; ionic conductivity; lithium-ion batteries; POROUS POLYMER ELECTROLYTES; ELECTROCHEMICAL PROPERTIES; MEMBRANES; GRAPHITE;
D O I
10.1007/s11664-025-11745-6
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In response to the growing demand for high-performance energy storage devices, this study focused on the development and characterization of novel electrolytes based on electrospun poly(vinylidene-co-hexafluoropropylene) (PVdF-HFP) fibrous membranes loaded with various concentrations of reduced graphene oxide (rGO). Lithium ions were incorporated into the novel electrospun PVdF/rGO fibrous membranes to form electrolytes, which were then sandwiched within a coin cell battery. The structural formation of the electrolytes was confirmed by Fourier transform infrared spectroscopy and Raman spectroscopy. The thermal properties were determined through thermogravimetric analysis and differential scanning calorimetry. The surface morphology of the samples was examined using scanning electron microscopy. The membranes exhibited high porosity and electrolyte uptake. The prepared cell delivered ionic conductivity in the order of 10-3 S cm-1, excellent cyclic stability with high discharge capacity and coulombic efficiency of 95%, and good lithium transference number. Overall, these findings highlight the potential of the developed PVdF-HFP/rGO electrolytes for high-performance energy storage applications.
引用
收藏
页码:1998 / 2008
页数:11
相关论文
共 50 条
  • [1] High-performance poly(vinylidene fluoride-co-hexafluoropropylene) based electrospun polyelectrolyte mat for lithium-ion battery
    Jakriya, Shahitha Parveen
    Syed, Abdul Majeed
    Pillai, Sindhu Krishna
    Rahim, Daulath Banu
    MATERIALS EXPRESS, 2018, 8 (01) : 77 - 84
  • [2] Design of amphiphilic poly(vinylidene fluoride-co-hexafluoropropylene)-based gel electrolytes for high-performance lithium-ion batteries
    Yongfen Tong
    Mingming Que
    Shan Su
    Lie Chen
    Ionics, 2016, 22 : 1311 - 1318
  • [3] Design of amphiphilic poly(vinylidene fluoride-co-hexafluoropropylene)-based gel electrolytes for high-performance lithium-ion batteries
    Tong, Yongfen
    Que, Mingming
    Su, Shan
    Chen, Lie
    IONICS, 2016, 22 (08) : 1311 - 1318
  • [4] Polymer electrolytes based on an electrospun poly(vinylidene fluoride-co-hexafluoropropylene) membrane for lithium batteries
    Li, Xin
    Cheruvally, Gouri
    Kim, Jae-Kwang
    Choi, Jae-Won
    Ahn, Jou-Hyeon
    Kim, Ki-Won
    Ahn, Hyo-Jun
    JOURNAL OF POWER SOURCES, 2007, 167 (02) : 491 - 498
  • [5] A high-performance electrospun thermoplastic polyurethane/poly(vinylidene fluoride-co-hexafluoropropylene) gel polymer electrolyte for Li-ion batteries
    Peng, Xiuxiang
    Zhou, Ling
    Jing, Bo
    Cao, Qi
    Wang, Xianyou
    Tang, Xiaoli
    Zeng, Juan
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2016, 20 (01) : 255 - 262
  • [6] Enhanced performance of electrospun poly(ethylene oxide)/reduced graphene oxide polymer electrolyte for lithium-ion batteries
    Parveen, J. Shahitha
    Thirumurugan, M.
    Dhakshnamoorthy, M.
    Basha, S. Sathik
    Banu, R. Daulath
    Shankar, V. Hari
    MATERIALS LETTERS, 2024, 355
  • [7] Microporous gel electrolytes based on amphiphilic poly(vinylidene fluoride-co-hexafluoropropylene) for lithium batteries
    Yu, Shicheng
    Chen, Lie
    Chen, Yiwang
    Tong, Yongfen
    APPLIED SURFACE SCIENCE, 2012, 258 (11) : 4983 - 4989
  • [8] Improving Thermal Regulation of Lithium-Ion Batteries by Poly(vinylidene fluoride-co-hexafluoropropylene) Composite Separator Membranes with Phase Change Materials
    Serra, Joao P.
    Antunes, Guilherme
    Fidalgo-Marijuan, Arkaitz
    Salado, Manuel
    Goncalves, Renato
    He, Weidong
    Lanceros-Mendez, Senentxu
    Costa, Carlos M.
    ACS APPLIED ENERGY MATERIALS, 2025, 8 (03): : 1847 - 1856
  • [9] A high-performance electrospun thermoplastic polyurethane/poly(vinylidene fluoride-co-hexafluoropropylene) gel polymer electrolyte for Li-ion batteries
    Xiuxiang Peng
    Ling Zhou
    Bo Jing
    Qi Cao
    Xianyou Wang
    Xiaoli Tang
    Juan Zeng
    Journal of Solid State Electrochemistry, 2016, 20 : 255 - 262
  • [10] Ternary composites of poly(vinylidene fluoride-co-hexafluoropropylene) with silver nanowires and titanium dioxide nanoparticles as separator membranes for lithium-ion batteries
    Sengupta, S.
    Tubio, C. R.
    Pinto, R. S.
    Barbosa, J.
    Silva, M. M.
    Goncalves, R.
    Kundu, M.
    Lanceros-Mendez, f S.
    Costa, C. M.
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 668 : 25 - 36