The Euler-Maruyama Approximation of State-Dependent Regime Switching Diffusions

被引:0
作者
Jin, Xinghu [1 ]
Shen, Tian [2 ]
Su, Zhonggen [2 ]
Tan, Yuzhen [3 ]
机构
[1] Hefei Univ Technol, Sch Math, Hefei, Anhui, Peoples R China
[2] Zhejiang Univ, Sch Math Sci, Hangzhou, Zhejiang, Peoples R China
[3] Qilu Univ Technol, Sch Math & Stat, Jinan, Shandong, Peoples R China
关键词
Change of measure; Euler-Maruyama scheme; Jacobi flow; Lindeberg principle; M-matrix; Random switching with dependent state; Skorokhod's representation; STOCHASTIC DIFFERENTIAL-EQUATIONS; EXPONENTIAL ERGODICITY; MARKOVIAN PROCESSES; INVARIANT-MEASURES; STABILITY; CRITERIA; CONVERGENCE; PRINCIPLE; FELLER; SDES;
D O I
10.1007/s10959-024-01379-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we consider the state-dependent regime switching diffusion process (X(t),R(t))t >= 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X(t), R(t))_{t \geqslant 0}$$\end{document}, where the drift term does not necessarily satisfy the dissipative condition for certain states of the switching component. We develop delicately the Lindeberg replacement trick and a change-of-measure technique to obtain the convergence rate between the law of (X(t),R(t))t >= 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X(t), R(t))_{t\geqslant 0}$$\end{document} and that of its Euler-Maruyama scheme with constant and decreasing step sizes. This convergence rate is quantified in terms of a function-class distance dG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_{\mathcal {G}}$$\end{document}. Moreover, we establish the ergodicity property of the Euler-Maruyama scheme. To illustrate our theoretical findings, we present in detail an example.
引用
收藏
页数:40
相关论文
共 45 条
  • [1] [Anonymous], 2006, STOCHASTIC DIFFERENT, DOI [10.1142/p473, DOI 10.1142/P473]
  • [2] Asymptotic behavior of SIRS models in state-dependent random environments
    Bao, Jianhai
    Shao, Jinghai
    [J]. NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2020, 38
  • [3] Approximation of Invariant Measures for Regime-switching Diffusions
    Bao, Jianhai
    Shao, Jinghai
    Yuan, Chenggui
    [J]. POTENTIAL ANALYSIS, 2016, 44 (04) : 707 - 727
  • [4] Bardet JB, 2010, ALEA-LAT AM J PROBAB, V7, P151
  • [5] BERMAN A., 1994, Nonnegative Matrices in the Mathematical Sciences
  • [6] Bras P., 2022, arXiv
  • [7] Total variation distance between two diffusions in small time with unbounded drift: application to the Euler-Maruyama scheme
    Bras, Pierre
    Pages, Gilles
    Panloup, Fabien
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2022, 27
  • [8] Bras Pierre, 2021, ARXIV
  • [9] Approximation of the invariant measure of stable SDEs by an Euler-Maruyama scheme
    Chen, Peng
    Deng, Chang-Song
    Schilling, Rene L.
    Xu, Lihu
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2023, 163 : 136 - 167
  • [10] Variable-Step Euler-Maruyama Approximations of Regime-Switching Jump Diffusion Processes
    Chen, Peng
    Jin, Xinghu
    Shen, Tian
    Su, Zhonggen
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 2024, 37 (02) : 1597 - 1626