Investigation of nonlinear dynamics in the stochastic nonlinear Schrödinger equation with spatial noise intensity

被引:1
作者
Shakeel, Muhammad [1 ]
Liu, Xinge [1 ]
Abbas, Naseem [2 ]
机构
[1] Cent South Univ, Sch Math & Stat, Changsha 410083, Peoples R China
[2] Quaid I Azam Univ, Dept Math, Islamabad 45320, Pakistan
基金
中国国家自然科学基金;
关键词
Stochastic nonlinear Schr & ouml; dinger equation; Multi soliton; (G; G; 1G)-expansion method; Generalized Kudryashov method; Dynamical analysis; Optical soliton; SCHRODINGER-EQUATION; WAVE SOLUTIONS;
D O I
10.1007/s11071-024-10757-x
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This study investigates the stochastic non-linear Schr & ouml;dinger equation (SNLSE) with spatialnoise intensity. Exact solutions, including trigonomet-ric, rational, hyperbolic, periodic, dark, kink, anti-kink, and exponential forms, are achieved by uti-lizing the logarithmic transformation, the(G ' G,1G)-expansion method, and the generalized Kudryashovmethod(gKM).Thesesolutionsareimportantforappli-cations in nonlinear optical fibers, signal processing,communication, and engineering sciences. The effectsof multiplicative noise on these solutions are analyzedthrough 3D, and contour visualizations by utilizingMathematica 11. Moreover, the nonlinear dynamicsof the system are analyzed by using phase portraitswithin bifurcation theory, describing chaotic behaviorinduced by external forces. Chaotic trajectories are fur-ther identified using 2D and 3D plots, time series anal-ysis, and Lyapunov exponents. The model's sensitivityunder varying initial conditions is also examined
引用
收藏
页码:8951 / 8971
页数:21
相关论文
共 32 条
  • [21] Stochastic optical solitons of the perturbed nonlinear Schrödinger equation with Kerr law via Ito calculus
    Onder, Ismail
    Esen, Handenur
    Secer, Aydin
    Ozisik, Muslum
    Bayram, Mustafa
    Qureshi, Sania
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (09)
  • [22] The homogeneous balance method and its application to the Benjamin-Bona-Mahoney (BBM) equation
    Rady, A. S. Abdel
    Osman, E. S.
    Khalfallah, Mohammed
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (04) : 1385 - 1390
  • [23] Analysis of analytical solutions of fractional Date-Jimbo-Kashiwara-Miwa equation
    Rahman, Riaz Ur
    Raza, Nauman
    Jhangeer, Adil
    Inc, Mustafa
    [J]. PHYSICS LETTERS A, 2023, 470
  • [24] Rckner M., 2023, PROBAB THEORY REL, V186, P1, DOI [10.1007/s00440-023-01201-z, DOI 10.1007/S00440-023-01201-Z]
  • [25] Pure-cubic nonlinear Schrodinger model with optical multi peak, homoclinic breathers, periodic-cross-kink and M-shaped solitons
    Seadawy, Aly R.
    Rizvi, Syed T. R.
    Ahmed, Sarfaraz
    Khaliq, Abdul
    [J]. OPTICAL AND QUANTUM ELECTRONICS, 2022, 54 (11)
  • [26] Interaction of lump, periodic, bright and kink soliton solutions of the (1+1)-dimensional Boussinesq equation using Hirota-bilinear approach
    Shakeel, Muhammad
    Liu, Xinge
    Al-Yaari, Abdullah
    [J]. JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2024, 31 (01)
  • [27] Exploring of soliton solutions in optical metamaterials with parabolic law of nonlinearity
    Shakeel, Muhammad
    Liu, Xinge
    Mostafa, Almetwally M.
    Alqahtani, Salman A.
    Alqahtani, Nouf F.
    Ali, Mohamed R.
    [J]. OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (05)
  • [28] Solitary wave solutions of Camassa-Holm and Degasperis-Procesi equations with Atangana's conformable derivative
    Shakeel, Muhammad
    Bibi, Aysha
    Zafar, Asim
    Sohail, Muhammad
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (02)
  • [29] Phase characterization and optical solitons for the stochastic nonlinear Schr?dinger equation with multiplicative white noise and spatio-temporal dispersion via It? calculus
    Tang, Lu
    [J]. OPTIK, 2023, 279
  • [30] Novel solutions to the coupled KdV equations and the coupled system of variant Boussinesq equations
    Yao, Shao-Wen
    Zafar, Asim
    Urooj, Aalia
    Tariq, Benish
    Shakeel, Muhammad
    Inc, Mustafa
    [J]. RESULTS IN PHYSICS, 2023, 45