Investigation of nonlinear dynamics in the stochastic nonlinear Schrödinger equation with spatial noise intensity

被引:2
作者
Shakeel, Muhammad [1 ]
Liu, Xinge [1 ]
Abbas, Naseem [2 ]
机构
[1] Cent South Univ, Sch Math & Stat, Changsha 410083, Peoples R China
[2] Quaid I Azam Univ, Dept Math, Islamabad 45320, Pakistan
基金
中国国家自然科学基金;
关键词
Stochastic nonlinear Schr & ouml; dinger equation; Multi soliton; (G; G; 1G)-expansion method; Generalized Kudryashov method; Dynamical analysis; Optical soliton; SCHRODINGER-EQUATION; WAVE SOLUTIONS;
D O I
10.1007/s11071-024-10757-x
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This study investigates the stochastic non-linear Schr & ouml;dinger equation (SNLSE) with spatialnoise intensity. Exact solutions, including trigonomet-ric, rational, hyperbolic, periodic, dark, kink, anti-kink, and exponential forms, are achieved by uti-lizing the logarithmic transformation, the(G ' G,1G)-expansion method, and the generalized Kudryashovmethod(gKM).Thesesolutionsareimportantforappli-cations in nonlinear optical fibers, signal processing,communication, and engineering sciences. The effectsof multiplicative noise on these solutions are analyzedthrough 3D, and contour visualizations by utilizingMathematica 11. Moreover, the nonlinear dynamicsof the system are analyzed by using phase portraitswithin bifurcation theory, describing chaotic behaviorinduced by external forces. Chaotic trajectories are fur-ther identified using 2D and 3D plots, time series anal-ysis, and Lyapunov exponents. The model's sensitivityunder varying initial conditions is also examined
引用
收藏
页码:8951 / 8971
页数:21
相关论文
共 32 条
[21]   The homogeneous balance method and its application to the Benjamin-Bona-Mahoney (BBM) equation [J].
Rady, A. S. Abdel ;
Osman, E. S. ;
Khalfallah, Mohammed .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (04) :1385-1390
[22]   Analysis of analytical solutions of fractional Date-Jimbo-Kashiwara-Miwa equation [J].
Rahman, Riaz Ur ;
Raza, Nauman ;
Jhangeer, Adil ;
Inc, Mustafa .
PHYSICS LETTERS A, 2023, 470
[23]  
Rckner M., 2023, Prob. Theory Related Fields, V186, P1, DOI [10.1007/s00440-023-01201-z, DOI 10.1007/S00440-023-01201-Z]
[24]   Pure-cubic nonlinear Schrodinger model with optical multi peak, homoclinic breathers, periodic-cross-kink and M-shaped solitons [J].
Seadawy, Aly R. ;
Rizvi, Syed T. R. ;
Ahmed, Sarfaraz ;
Khaliq, Abdul .
OPTICAL AND QUANTUM ELECTRONICS, 2022, 54 (11)
[25]   Interaction of lump, periodic, bright and kink soliton solutions of the (1+1)-dimensional Boussinesq equation using Hirota-bilinear approach [J].
Shakeel, Muhammad ;
Liu, Xinge ;
Al-Yaari, Abdullah .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2024, 31 (01)
[26]   Exploring of soliton solutions in optical metamaterials with parabolic law of nonlinearity [J].
Shakeel, Muhammad ;
Liu, Xinge ;
Mostafa, Almetwally M. ;
Alqahtani, Salman A. ;
Alqahtani, Nouf F. ;
Ali, Mohamed R. .
OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (05)
[27]   Solitary wave solutions of Camassa-Holm and Degasperis-Procesi equations with Atangana's conformable derivative [J].
Shakeel, Muhammad ;
Bibi, Aysha ;
Zafar, Asim ;
Sohail, Muhammad .
COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (02)
[28]  
Stoch A., 2015, Stochastic Partial Differential Equations: Analysis and Computations, V3, P103
[29]   Phase characterization and optical solitons for the stochastic nonlinear Schr?dinger equation with multiplicative white noise and spatio-temporal dispersion via It? calculus [J].
Tang, Lu .
OPTIK, 2023, 279
[30]   Novel solutions to the coupled KdV equations and the coupled system of variant Boussinesq equations [J].
Yao, Shao-Wen ;
Zafar, Asim ;
Urooj, Aalia ;
Tariq, Benish ;
Shakeel, Muhammad ;
Inc, Mustafa .
RESULTS IN PHYSICS, 2023, 45